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a b s t r a c t

Codends are the rear parts of trawls, which collect the catch and where most of the selectivity process
occurs. Selectivity is the process by which the large fish are retained while the small ones are released.
The codends applied in many fisheries often consist of only one type of mesh. Therefore it is reasonable
to consider these codends as being axisymmetric. Their shapes depend mainly on the volume of catch,
on the shape of meshes (diamond, square, hexagonal) and on the number of meshes along and around
the codend. The shape of the codends is of prime importance in order to understand the selectivity
process. This paper presents a model of deformation of codends made up of hexagonal meshes. Two
types of hexagonal meshes have been investigated: the T0 codend where two sides of the hexagons are
in axial planes and the T90 codend where two sides are perpendicular to the codend axis. The forces
involved in this model are twine tension and catch pressure. A Newton–Raphson scheme has been used
to calculate the equilibrium.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fishing operations target the largest sized fish mostly. The
catch often contains considerable amounts of undersized fish or
non-targeted species. This non-target catch could reach one-third
of the total marine harvest worldwide (Alverson and Hughes,
1996).

In order to reduce this wasteful bycatch, studies of trawl
selectivity have been carried out at sea. But due to the large
number of uncontrollable parameters, numerous trials have to be
undertaken in order to reach good quality statistics. This leads to
expensive studies which are often inconclusive.

To overcome this uncertainty, it is possible to use predictive
models of codend selectivity. Such models (e.g. PRESEMO,
Herrmann et al., 2006, 2007) have been developed in the last
few years and are able to simulate codend selectivity quickly and
simply. Even though these tools are based on approximations,
their results are often reliable. However, it is important to know
the fish behaviour and the mechanical codend behaviour.

To understand better the codend behaviour, it is essential to
gather data on the mesh openness along the codend when the
catch builds up. This opening also depends on the design of the
codend, i.e. the mesh type (diamond, square, hexagonal), the
number of meshes around and along, the size of meshes. Two
numerical models developed in recent years are already able to

assess codend geometries: O'Neill (1997) derives differential
equations that govern the geometry of axisymmetric codends for
a range of different mesh shapes, and Priour (1999, 2013) has
developed a more general three-dimensional finite element
method model of netting deformation. Both of these models can
take into account the elasticity and flexural rigidity of the twines,
the mesh shapes (diamond, square, hexagonal), and the hydro-
dynamic forces that act on the netting material and catch. Their
numerical simulations were compared by O'Neill and Priour
(2009) and were found to be very similar.

In a previous paper (Priour et al., 2009), an axisymmetric model
of the codend made up of diamond, square or rectangular meshes
has been developed by looking at the force balance on the twine
elements on a meridian along the codend length. The advantage of
this model over those above is that it is easy to implement and its
solution does not depend on the use of licensed software.

The diamond mesh codend is the codend type which has
traditionally been applied in many trawl fisheries. This type of
codend could be modelled by numerical models such as those
previously described. In recent decades there has been a tendency
to use netting with thicker twine (Herrmann et al., 2013). In this
case the use of an ideal diamond shape model is not perfect due to
the size of the knots. As mentioned by Sistiaga et al. (2011),
a hexagonal mesh model is preferable compared to a diamond
mesh model to describe the actual shape of the meshes in the
codends (Fig. 2). This means the knots are sides of the hexagon.

In this present paper this previous model (Priour et al., 2009)
has been extended to hexagonal meshes. Two types of hexagonal
meshes are investigated: the T0 type, where twines are in axial

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/oceaneng

Ocean Engineering

http://dx.doi.org/10.1016/j.oceaneng.2014.09.037
0029-8018/& 2014 Elsevier Ltd. All rights reserved.

n Tel.: þ33 2 98 22 41 81; fax: þ33 2 98 22 85 47.
E-mail address: daniel.priour@ifremer.fr

Ocean Engineering 92 (2014) 1–11

www.sciencedirect.com/science/journal/00298018
www.elsevier.com/locate/oceaneng
http://dx.doi.org/10.1016/j.oceaneng.2014.09.037
http://dx.doi.org/10.1016/j.oceaneng.2014.09.037
http://dx.doi.org/10.1016/j.oceaneng.2014.09.037
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2014.09.037&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2014.09.037&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2014.09.037&domain=pdf
mailto:daniel.priour@ifremer.fr
http://dx.doi.org/10.1016/j.oceaneng.2014.09.037


planes (the angle between this axial plane and the axis of the
codend is 01) and the T90 type where twines are in planes
perpendicular to the codend axis (the angle between this plane
and the axis of the codend is 901, Fig. 1). Although in most fisheries
the codends are T0 type (the knots are in axial planes), in some
cases, e.g. Baltic Sea for cod fishery (Anon, 2005), the codends of
T90 type are legal (the knots are perpendicular to the codend axis).

This model is supposed to represent usual netting where the
knots are large enough to consider their size as one side of the
hexagonal mesh. Obviously the six sides of the hexagon are not
necessarily equal (Fig. 2).

2. The T0 codend

By assuming axisymmetry, the codend geometry can be deter-
mined by examining the nodes belonging to one row of twine
along the codend length. This row is highlighted at the top of Fig. 1
and in Fig. 3. This row is called the meridian. The approach
consists of three steps. Firstly, the initial position of these nodes,
consistent with the boundary conditions, must be defined. Then,
the forces acting on these nodes are calculated. Finally, using the
Newton–Raphson method (Priour, 2013), the equilibrium position
of these nodes is evaluated.

The forces that act on the codend are the twine tensions and
the hydrodynamic forces. As shown by O'Neill and O'Donoghue
(1997), the hydrodynamic forces that act on the unblocked netting
are negligible in comparison with the pressure forces acting on the
netting where the catch blocks the meshes. Consequently, it is
only necessary to consider the twine tensions and the pressure
forces that act in the region of the catch.

2.1. Nodes of the T0 codend

The meridian is such that some nodes of this meridian are in
the plane XOZ, as shown in Fig. 3. The mesh i (trapeze in Fig. 3 ) is

made up of 6 twines and 4 nodes (ia, ib, ic and id). The nodes ja, jb,
jc and jd belong to the same mesh ring but they do not belong to
the calculated meridian (highlighted meridian in Fig. 3). In Fig. 3
the node i�1d belongs to the previous mesh (i�1) and the node
iþ1a belongs to the following mesh (iþ1). The nodes of the
calculated meridian with suffixes a and d (e.g. ia, id, i�1d, iþ1a)
belong to the plane XOZ (their y coordinates are 0 as shown in
Fig. 3). The nodes of the calculated meridian with suffixes b and c
(e.g. ib, ic, i�1b, iþ1c) do not belong to the plane XOZ, they are in
a radial plane which gives an angle θ with the plane XOZ. With

θ¼ π
nbr

ð1Þ

where θ is the angle between the two radial planes passing by ia
and ib (Rad) and nbr is the number of meshes around.

The reason is that the neighbouring nodes ja and jd belong to a
radial plane which gives an angle 2θ with the plane XOZ. This is
due to axisymmetry. Likewise the nodes jb and jc belong to
another radial plane which gives an angle �2θ with the plane
XOZ. Due to equilibrium, the nodes ib and ic have to be in a radial
plane just between the radial planes of ja and ia.

From this definition of node positions, we are able to say

ia¼ ðiax;0; iarÞ
With iax the position of ia along the X-axis and iar its radial

position,

ib¼ ðibx; ibr sin θ; ibr cos θÞ
ic¼ ðicx; icr sin θ; icr cos θÞ
id¼ ðidx;0; idrÞ

where suffix x refers to the position along the X-axis and suffix r to
the radial position.

The position of the neighbouring nodes is

ja¼ ðiax; iar sin 2θ; iar cos 2θÞ
jb¼ ðibx; � ibr sin θ; ibr cos θÞ

Fig. 1. The two types of hexagonal meshes investigated in the paper: the T0 at the top where some twines are in axial planes and the T90 where some twines are in planes
perpendicular to the codend axis. The two codends are made up of the same piece of netting (24 by 24 meshes) and the catch covers the same number of meshes (10). The
vertical line is the limit of the catch. Due to axisymmetry only one meridian is calculated (highlighted row).
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