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a b s t r a c t

The increasing pressure on earth's raw material resources forces the search for alternatives. An alternative
source of raw materials is deep sea deposits. The mining of deep sea deposits comes with many challenges,
one of them being the vertical transport of excavated material from the seafloor to a floating production
platform at the surface. Material can be transported vertically by means of suspending the material in an
upward flow of water in a riser. When the riser is fed irregularly by intermittent batches of solids,
accumulation of solids can occur that in turn can result in riser blockage. The accumulation process is
counteracted by axial dispersion of the batches. In this paper the vertical hydraulic transport of batches is
experimentally explored to get insight in the influence of solids on the axial dispersion process. By analysis
of the decrease in volume fraction, the axial dispersion coefficient for the vertical transport of batches of
sand, gravel and plastic grains relative to the Taylor dispersion coefficient for dissolved matter in turbulent
pipe flow is determined. The analysis shows that the presence of solids attenuates axial dispersion such
that it plays a minor role in the transport process, particularly for coarse sediments.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

There has been several decades of research into hydraulic
lifting of solids. The work of Newitt et al. (1961), Condolios et al.
(1963), Brebner and Wilson (1964), Cloete et al. (1967), Sellgren
(1982) and Grbavčić et al. (1992) for instance aims at (economic)
optimization of vertical transport systems. In their work, station-
ary transport situations are investigated, with a focus on transport
velocities, hydraulic losses and production capacity.

Interest in vertical transport for deep sea mining applications
emerged in the 1960s with the publication of Mero (1965).
He suggests the use of vertical hydraulic transport for lifting
manganese nodules, an option also mentioned in Pearson (1975).
Research of vertical hydraulic lifting of solids for deep sea mining,
again aiming at optimization of systems with a stationary flow, is
described in Clauss (1971), Engelmann (1978), Xia et al. (2004a,b)
and Yang et al. (2011). Pougatch and Salcudean (2008) performed
two-dimensional numerical simulations of an air lift system for
deep sea mining applications.

Many workers have investigated the stationary transport of
solids. This paper however is concerned with the vertical
hydraulic transport of individual batches of solids. Vertical
transport distances in deep sea mining operations typically are
hundreds to thousands of meters. The mining of rock phosphates
in New Zealand happens at a few hundreds of meters water
depth, see Widespread Energy (2011), the mining of Seafloor
Massive Sulphide deposits happens at two thousand meters of
waterdepth, see Nautilus Minerals (2010) and mining polyme-
tallic nodules at even five thousand meters of water depth, as
described in Mero (1965) and Pearson (1975). With these large
transport distances, irregular feeding of the riser can result in
the development of batches of solids, that can overtake each
other and even result in formation of solid plugs that can block
the riser. This problem has been encountered in terrestrial
mining sites (Van den Berg and Cooke, 2004), and it has been
addressed in Talmon and Van Rhee (2011) in the context of deep
sea mining.

The transport of individual batches can result in system failure,
therefore the transport phenomena need to be understood very
well. Talmon and Van Rhee (2011) use an advection–diffusion
equation to model the transport process. The first important
aspect is modelling the nonlinear advection term by means of
hindered settling theory. This approach is adopted for hydraulic
transport by Clauss (1971), Engelmann (1978), Evans and Shook
(1991), Van Rhee (2002) and Talmon et al. (2007). The diffusion
term represents particle dispersion, which Talmon and Van Rhee
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(2011) model as axial dispersion for turbulent pipe flow according
to Taylor (1954). Evans and Shook (1991) adopted the same
method and they conducted vertical transport experiments with
sand ðdm ¼ 0:175 mmÞ and fine gravel ðdm ¼ 4:1 mmÞ. They found
that the axial dispersion of sand indeed could be modelled well by
Taylor dispersion, but for the fine gravel their measurements were
inconclusive. Since axial dispersion counteracts the development
of steep gradients in the volume fraction of solids this process is
beneficial for prohibiting the formation of plugs.

In this study, the authors are concerned with flow assurance of
vertical transport systems in general, especially the formation
of solid plugs is a topic of interest. Vertical transport systems
for deep sea mining typically have L=D¼ Oð104Þ. This is a strong
argument to apply a one-dimensional continuum model. The
authors are developing a dynamic one-dimensional model of the
entire vertical transport system that includes conservation of mass
and momentum for the mixture, and that includes the nonlinear
advection–diffusion equation to model the transport of solids. This
macroscopic model is to be used for studying the development
of plugs and for optimization of loading strategies for the riser
system. In order to find out whether axial dispersion plays a
significant role in attenuation of plugs, this paper experimentally
explores the axial dispersion of suspended sediment in vertical
pipe flow.

2. Theory of axial dispersion

The transport of suspended solids or dense granular flows can
be approximated as a continuum (Jop et al., 2006), which enables
the use of the advection–diffusion equation. For the axial dimen-
sion z of a pipeline or riser, the advection–diffusion equation reads

∂cv
∂t

þ∂cv � vsðcvÞ
∂z

¼ ∂
∂z

� ϵz �
∂cv
∂z

� �
ð1Þ

In Eq. (1), cv is the volume fraction of solids, vsðcvÞ is the solids
transport velocity and ϵz is the axial dispersion coefficient. From
Eq. (1) it becomes clear immediately that axial dispersion is
relevant for the cases with large volume fraction gradients
∂cv=∂z, i.e. in the case of plug development. Continuous solids
input with minor variations will result in ∂cv=∂z� 0, and in these
cases axial dispersion is of minor or even no importance.

An important hallmark in the theory of axial dispersion is
Taylor (1953), who studied the dispersion of a solvent flowing
through a horizontal pipe in the laminar regime. Taylor (1953)
used a parabolic velocity profile for the horizontal pipe (i.e.
Poiseuille flow), from which he calculated the axial stretching of
the solute. The solvent propagates faster along the centerline than
at the wall of the pipe. Molecular diffusion causes mixing of the
solvent over the pipe diameter. It proved that axial dispersion
could be expressed analogous to a diffusion coefficient, like
ϵz ¼D2=4 � v2f =ð48 � ϵmÞ, with ϵm being the coefficient of molecular
diffusion.

In Taylor (1954), this theory was extended to the case of transport
by turbulent flow through a horizontal pipe. Again the analogy with a
virtual diffusion coefficient was sought, and it showed that for
turbulent flow, the molecular diffusion coefficient ϵm is negligible
compared to the turbulent eddy viscosity. For transport of a solvent
in turbulent pipe flow, Taylor (1954) introduces the axial dispersion
coefficient being:

ϵz ¼ 10:1 � D
2
�
ffiffiffiffiffi
τf
ρf

s
ð2Þ

The wall shear stress for clear fluid τf depends on the pipe
properties and flow properties. For turbulent pipe flow it is given by

τf ¼
λ � ρf � v2f

8
ð3Þ

By dimensional analysis Eckstein et al. (1977) pointed out that solid
particles migrating under shear at very low Reynolds numbers show

Nomenclature

A cross section area (m2)
CD drag coefficient (–)
cv volume fraction of solids (–)
cv time averaged volume fraction of solids (–)
cv;0 initial volume fraction of solids (–)
d particle diameter (m)
D pipe diameter (m)
g gravitational acceleration (m/s2)
hi initial batch height (m)
kf conductivity of the carrier fluid (S/m)
km conductivity of the mixture (S/m)
l batch length coordinate (m)
L length (m)
Lbatch batch length (m)
m mass (kg)
n Richardson and Zaki exponent (–)
νf kinematic fluid viscosity (m2/s)
Pe Peclet number (–)
Q flow rate (m3/s)
Stk Stokes number (–)
t time (s)
tp characteristic particle time scale (s)
tf characteristic bulk flow time scale (s)
t time (s)

Δt14 time needed for a batch to propagate through the
measurement section (s)

vf fluid velocity (m/s)
vm mixture velocity (m/s)
vs solid fraction velocity (m/s)
vslip slip velocity (m/s)
wt terminal settling velocity (m/s)
z axial coordinate (m)
δ relative decrease in peak volume fraction (–)
δA relative decrease in peak volume fraction due to non-

linear advection (–)
δD relative decrease in peak volume fraction due to axial

dispersion (–)
δTaylor relative decrease in peak volume fraction due to Taylor

dispersion (–)
δTaylor;ref reference value of the relative decrease in peak

volume fraction due to Taylor dispersion (–)
ϵm axial dispersion coefficient due to Brownian motions

(m2/s)
ϵz axial dispersion coefficient (m2/s)
ϵTaylor Taylor dispersion coefficient (m2/s)
λ Darcy–Weisbach friction coefficient (–)
ρ density (kg/m3)
τ shear stress (Pa)
CCM conductivity concentration meter
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