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a b s t r a c t

In this research, optimization of shape and operating conditions of a submerged hydrofoil is investigated
by a heuristic optimization approach, been a combination of an adaptive network based fuzzy inference
system model (ANFIS) and particle swarm optimization (PSO). The constrained discrete variables such as
the thickness and camber of hydrofoil, angle of attack and submerge distance are clearly defined as
design variables and the lift to drag ratio is selected as a nonlinear objective function, which is extracted
from an accurate numerical procedure. The Navier–Stocks equation is numerically solved, and volume of
fluid (VOF) method has been utilized to simulate two-phase fluid (water and air). The results
demonstrate that the resulted body of the hydrofoil in the optimum operating conditions should reach
a maximum value of lift to drag ratio.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Hydrofoils play a significant role in the design of hydrofoil-
boats, which move on the water surface and applied the hydrofoil
to reduce drag force. Hydrofoils are installed under boat’s hull and
have moved underwater, near the free surface of water. Therefore,
generated water wave, which is created by boat movement, can
influence in the hydrofoil performance and the boat revenue,
consequently. There is a great volume of published work dealing
with the hydrofoil performances, (De Blasi et al., 2000; Daskovsky,
2000; Filippov, 2001; Kouh et al., 2002; Bourgoyne, 2003; Chen
and Liu, 2005; Hay and Visonneau, 2005; Carcaterraa et al., 2005;
Xie and Vassalos, 2007; Sadathosseini et al., 2008; Ducoin et al.,
2009; Münch et al., 2010; Zanette et al., 2010; Kim and Yamato,
2005). The ultimate goal is to develop knowledge that helps
hydrofoil design and services more effectively and efficiently.
As a result, several numerical simulation and optimization methods
have been widely applied in hydrodynamics. Traditional methods
that need to calculate and analyze for modification of the model
frequently, had wasted time and had not been in suitable accuracy.
On the other hand, the visualization of flow based on CFD has well
established, and quite accurate and robust approximate models
and optimization algorithms have innovated for the last decade,
too. Today, several new techniques are widely applied to optimize
some equipment (Hwang et al., 2009; Shafaghat et al., 2008; Schmitz
et al., 2004; Hsin et al., 2006; Spogis and Nunhez, 2009). Further-
more, deterministic optimization process such as first order gradient

techniques had been applied to reach the maximum value of drag to
lift ratio (Tozzi, 2004). Heuristic method such as genetic algorithm is
used to optimize hydrofoil in many researches, too (Ouyang et al.,
2006; Wang et al., 2012; Yang et al., 2012, 2009; Yang and Shu, 2012;
Frunz et al., 2010; Guo et al., 2009; Cocke, 2012).

In the previous studies, neither high accuracy numerical
methods, nor robust optimization algorithms, which can simulta-
neously optimize the operating conditions, are used. On the other
words, almost all of them have focused to find optimum config-
urations of hydrofoil with the negligence of the operating condi-
tions. Furthermore, design variables in most of them have been
continuous ones and additionally, these methods would be very
expensive and time consuming.

In this study, a robust method is designed for optimization of
hydrofoil, moving near the free surface of water. This algorithm
combines ANFIS method and PSO algorithm. Thickness and cam-
ber of hydrofoil, angle of attack and submerge distance are
considered as constrained design variables and value of lift to
drag ratio is defined as the objective function, which has a
nonlinear behavior. The objective function is obtained by numer-
ical simulation. On the other hand, the design variables are
discrete ones and ANFIS is estimated the variable performance
and an accurate continuous search space is generated. Finally, PSO
algorithm, which is simple, fast, more efficient, and useful for
complex and nonlinear problem, is obtained the best configuration
of hydrofoil and optimum operating conditions.

2. Governing equations

The basic equations, which describe the conservation of mass,
momentum, and scalar quantities can be expressed in the following
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vector form, which is independent of the coordinate system.
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The stress tensor for a Newtonian fluid is:
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In addition, the Fourier-type law usually gives the scalar flux
vector:

q
-¼ Γϕgradϕ ð5Þ

In this study, the k�ε model has been chosen because of being
a public turbulent model. The comparison of experimental and
numerical data shows that the k�ε model is suitable, too.
Furthermore, the turbulent intensity is equal to 5% (Yue et al.,
2003,, 2005).
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The turbulent viscosity and diffusivity coefficients are defined as:
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Moreover, the generation term G in Eqs. (6) and (7) is defined as:
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The discretization of the above differential equations is carried
out by applying a finite-volume approach. First, the solution
domain is divided into a finite number of discrete volumes or
cells, where all variables are stored at their geometric centers (see
e.g., Fig. 1).

The equations are then integrated over all the control volumes
by utilizing the Gaussian theorem. The discrete expressions are
presented to refer only one face of the control volume, e, for the
sake of brevity. For every variable ϕ (which may also stand for the
velocity components), the result of the integration yields:

∂ν
∂t

ρϕð Þnþ1
p � ρϕð Þnp

h i
þ Ie� Iwþ In� Is ¼ Sϕδν ð11Þ

where I’s are the combined cell-face convection Ic and diffusion
ID fluxes. The diffusion flux is approximated by central difference.
The discretization of the convective flux requires special attention
and it causes to develop the various schemes. A representation of
the convective flux for cell-face (e) is:

Ice ¼ ρ� V � Að Þeϕe ¼ Feϕe ð12Þ
The value of ϕe is not known and should be estimated from the

values of neighboring grid points by interpolation. The expression
for the ϕe is determined by Second order Upwind scheme. The
final form of the discretized equation from each approximation is
given as:

Ap � ϕp ¼ ∑
m ¼ E;W ;N;S

Am � ϕmþS0ϕ ð13Þ

where A;s are the convection-diffusion coefficients. The term S0ϕ in
Eq. (13) contains quantities arising from non-orthogonality,
numerical dissipation terms and external sources. For the momen-
tum equations, it is easy to separate out the pressure-gradient
source from the convection momentum fluxes.

VOF ideas have been used to simulate two-phase fluid (water
and air). The VOF model can model two or more immiscible fluids
by solving a single set of momentum equations and tracking the

Nomenclature

A cell face area
AOA angle of attack
BP back propagation algorithm
c cord length
Ca camber of hydrofoil
CFD computational fluid dynamic
CL lift coefficient
CD drag coefficient
2D two dimension
F mass flux
Fr Froude number according cord length
G generation term
g gravity acceleration
GA genetic algorithm
H water depth
h submerge distance
Ic convection flux
ID diffusion flux
k turbulence model parameter
LS least square method
_m mass transfer

P pressure
PSO particle swarm optimization
q! scalar flux vector
Re Reynolds number
S
!

source term
t time
T
!

stress tensor
th thickness of hydrofoil
νi normalized ring strengths
Vi current position due to new velocity of every particle

V
!

velocity vector
VOF volume of fraction
X horizontal Cartesian coordinate
Y vertical Cartesian coordinate
θ angle (1)
ε turbulence model parameter
δν cell volume
ρ density
α volume fraction
ϕ scalar quantity
ϖi normalized ring strengths
Γ diffusivity coefficient
μ dynamic viscosity
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