Contents lists available at ScienceDirect

Ocean Engineering

journal homepage: www.elsevier.com/locate/oceaneng

Carbon capture and storage—Solidification and storage of carbon dioxide captured on ships

Peilin Zhou, Haibin Wang*

Department of Naval Architecture and Marine Engineering, University of Strathclyde, G4 0LZ Glasgow, UK

ARTICLE INFO

ABSTRACT

Article history: Received 3 January 2014 Accepted 7 September 2014

Keywords: Emissions reduction Carbon capture Solidification and storage Chemical absorption Environment protection To meet the International Maritime Organization (IMO) target of 20% reduction of CO_2 emissions from marine activities by 2020, application of Carbon Capture and Storage (CCS) on ships is considered as an effective way to mitigate CO_2 emissions while other low carbon shipping technologies are being developed. Literature reviews on CCS methods for onshore applications indicate that the current CCS technologies could not be implemented on boards directly due to various limitations on ships. A novel chemical CO_2 absorption and solidification method for CO_2 storage on-board is proposed, presented and analyzed. Technical feasibility with explanation of principles and cost assessment are carried out for a case ship with a comparison to a conventional CCS method. The paper also presents results obtained from laboratory experiment including factors that affect the absorption. Theoretical study and laboratory experiment illustrate the proposed CO_2 solidification method is a promising, cost effective and feasible method for CO_2 emissions reduction on ships.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

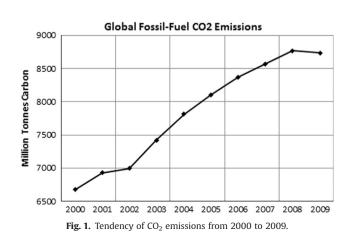
Climate change has become a popular topic simply because it leads the melting glaciers, rising sea levels and the extinction of endangered species. It is well-known that greenhouse gases (GHG) are the cause of the climate change which is mainly contributed by the carbon dioxide (Houghton, 2004). According to IPCC report, the current CO₂ concentration in the atmosphere is increased by 100 ppm which is about 34% increment compared with the preindustrial level (Rogner et al., (2007)). Fig. 1 presents the growing of CO₂ emissions from 2000 to 2009 (Boden et al., 2010). Although the emissions are a little bit declined from 2008 to 2009, the tendency of the curve is obviously climbing.

For the global economy, international shipping have an immeasurable effect as it is the most effective way for large quantity and long distance transportation of international trade. Referring to the report of Second IMO GHG Study 2009, international shipping is estimated to have 870 million tones CO₂ emitted in 2007 which is about 2.7% of the global CO₂ emissions (Buhaug et al., 2009). There are numbers of methods to reduce the ship GHG emissions. EEDI, EEOI and SEEMP stipulated by IMO are focusing on increasing the energy efficiency. With high energy efficiency, the fuel

E-mail address: haibin.wang.100@strath.ac.uk (H. Wang).

http://dx.doi.org/10.1016/j.oceaneng.2014.09.006 0029-8018/© 2014 Elsevier Ltd. All rights reserved. consumed will be reduced so that the CO_2 generated will be decreased. EEDI, EEOI and SEEMP regulations are proposed to be entered into force on 2013 with an aim to reduce about 180 million tons of CO_2 emissions from international shipping annually by 2020. It is about 20% of the current emissions level. Thus, so many projects emerge with a target of 20% reduction of CO_2 emissions.

CCS is an effective way to mitigate and even eliminate the effect of global warming caused by CO_2 emissions. It is now only used on shore based power plants and industrial processes (Global Carbon Capture and Storage Institute). Fig. 2 presents three general ways of CCS that are available for onshore application. The principles of pre-combustion method are to remove carbon component from the fossil fuel priory to its combustion. Oxy-fuel capture method is to burn the fossil fuel with pure oxygen rather than oxygen in air so that only CO_2 and water vapor are produced after combustion and CO_2 can be easily captured by condensing the flue gases. Postcombustion capture method is to have CO_2 captured from the flue gases after the combustion of the fossil fuel.


Although these methods could help capture carbon from fuel oil, mechanically installation of the systems on ships will bring great impacts on shipping performance. For instance, additional power consumption will increase fuel consumption, more space taken leads a reduction of cargo transported and storage of CO_2 on ships in a form of gas or liquid state is difficult and unsafe. No matter what kind of method is considered, the impacts on shipping performance should be minimized.

^{*} Correspondence to: Department of Naval Architecture and Marine Engineering, Henry Dyer Building, 100 Montrose Street, University of Strathclyde, G4 0LZ, Glasgow, UK. Tel.: +44 141 548 3344; fax: +44 141 552 2879.

Nomenclature		Ca(OH) ₂ CaCO ₃	calcium hydroxide calcium carbonate
CCS CFD CPCS	carbon capture and storage computing fluid dynamic chemical processes for carbon Solidification	CaO CO_2 CO_3^-	calcium oxide carbon dioxide carbonate ion
D	diameter	H_2O	water
DWT	deadweight tonnage		sodium carbonate
EEDI	energy efficiency design index	NaOH	sodium hydroxide
EEOI	energy efficiency operational indicator	NO _x	nitrous oxides
EIGA	european industrial gases association	SO_x	sulfur oxides
EOR	enhanced oil recovery		
GHG	greenhouse gases	Atomic a	ınd molar weight
Н	height		
HSFO	high sulfur fuel oil	Carbon ((C) 12
ICP	inductively coupled plasma	Hydroge	
IMO	international maritime organization	Oxygen	
IPC	inductively coupled plasma	$Ca(OH)_2$	
IPCC	intergovernmental panel on climate change	CaCO ₃	
ITTC	international towing tank conference		(Ca) 40
LBP	length between perpendiculars	CaO	56
LOA	length overall	CO_2	44
М	molar mass	H_2O	18
т	mass	Na_2CO_3	106
MCR	maximum continuous rating	NaOH	40
п	molar number	Sodium	(Na) 23
Р	power		
р	profit	Units	
R	rate		
SEEMP	ship energy efficiency management plan	L	litre
SFOC	specific fuel oil consumption	L/min	litre per minute
t	time	mol	mole number
V	volume	ррт	parts per million
π	pi		
ρ	density		
Chemical substances			

A novel carbon capture method is proposed in order to reduce the power requirement, save spaces on board and avoid CO_2 storage in a gas or liquid form on ships. This method applies two chemical processes and a physical step to absorb CO_2 from exhaust gases, precipitate the CO_3^- ion and separate $CaCO_3$ from the absorption solution on ship board.

In this study, the results obtained from laboratory experiment are extended to apply on a case ship. An economical assessment is presented by comparing the chemical processes for carbon solidification (CPCS) with the CO₂ compression and liquefaction

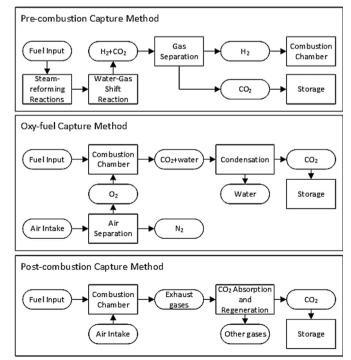


Fig. 2. General carbon capture methods.

Download English Version:

https://daneshyari.com/en/article/8066100

Download Persian Version:

https://daneshyari.com/article/8066100

Daneshyari.com