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a b s t r a c t

We obtain many different variable separation solutions for (2þ1)-dimensional variable coefficient
dispersive long wave equation by means of five different methods, including the multilinear variable
separation approach, the projective Ricatti equation method, the extended projective Ricatti equation
method, the extended tanh-function method and the improved tanh-function method. However, by
careful analysis, we find that variable separation solution obtained by the multilinear variable separation
approach includes all variable separation solutions obtained by other four direct methods. Thus variable
separation solution for (2þ1)-dimensional variable coefficient dispersive long wave equation exists
a uniform form. Based on this uniform variable separation solution, we discuss the completely elastic
interaction between foldons, the non-completely elastic interaction between bell-like semi-foldon,
peaked semi-foldon and foldon, and the completely non-elastic interaction between bell-like semi-
foldon and peaked semi-foldon. These results are helpful to analyze more precisely nonlinear and
dispersive long gravity waves traveling in two horizontal directions, such as the bubbles on (or under)
a fluid surface and folded waves in various ocean waves.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

As self-localized robust and long-lived solitary waves that do
not disperse and preserve their identity as they travel through a
medium, nonlinear wave excitations and solitons are ubiquitous in
Nature and play increasingly important role in the investigation of
many natural science from chemistry, biology, mathematics and
communication to almost all branches of physics such as fluid
dynamics, plasma physics, field theory, nonlinear optics and
condensed matter physics. Recently, the wave-particle duality
and intrinsic (“hidden”) degrees of freedom have been shown up
in the soliton scattering on potential barriers and wells (Belyaeva
and Serkin, 2012).

In modern soliton theory, the variable separation approach
(VSA) is a crucial and powerful mean to obtain abundant and
general solutions of NLPDEs. To our excitement, many kinds of
“variable separation” procedures have been presented recently. For
example, the multilinear variable separation approach (MLVSA)
was established firstly in 1996 for the Davey–Stewartsen
equation (Lou and Lu, 1996). Wen (2011) and Shen and Jin (2011)

obtained variable separation solutions of some NLPDEs via the
Bilinear method. Moreover, many direct methods, which used to
obtain traveling wave solutions of NLPDEs, have been successfully
extended to derive variable separation solutions. For example,
since Zheng et al. (2004) used the extended tanh-function method
(ETM) to realize variable separation for the (2þ1)-dimensional
Broer–Kaup–Kupershmidt system, many authors generalized this
method to obtain variable separation solutions for other (1þ1)-
dimensional (Dai et al., 2006a; Zhu et al., 2006), (2þ1)-dimen-
sional (Dai et al., 2008; Fang et al., 2005a; Ji and Lü, 2005; Xu and
He, 2006) and (3þ1)-dimensional (Dai et al., 2006a; Zhu and
Zheng, 2007; Zhu et al., 2008) systems. Then, an improved ETM
was presented and applied to obtain variable separation solutions
for NLPDEs (Dai and Wang, 2009; Ma and Fang, 2009; Ma and
Zhang, 2010). Moreover, the projective Ricatti equation method
(PREM) (Dai and Ni, 2006b; Zhu and Ma, 2008) and extended
PREM (El-Sabbagh et al., 2009) were constructed to realize the
variable separation to NLPDEs, respectively.

So far, one can obtain seemingly different variable separation
solutions for NLPDEs via MLVSA, ETM, improved ETM, PREM and
extended PREM. However, by careful analysis, we find that these
different variable separation solutions obtained via MLVSA, ETM,
improved ETM, PREM and extended PREM are uniform. To illus-
trate this point, we apply these five different methods to the
following (2þ1)-dimensional variable coefficient dispersive long
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wave equation (vcDLWE) (Zhang et al., 2002)

utyþαðtÞhxxþβðtÞ
2

ðu2Þxy ¼ 0;htþλ2αðtÞuxxyþβðtÞðhuÞx ¼ 0; ð1Þ

where αðtÞ and βðtÞ are two functions of variable ftg, and λ is an
arbitrary nonzero constant. When αðtÞ ¼ βðtÞ ¼ 1, this equation is
the celebrated (2þ1)-dimensional DLWE, which was used to
model nonlinear and dispersive long gravity waves traveling in
two horizontal directions on shallow waters of uniform depth. The
(1þ1)-dimensional DLWE (y¼x in (1)) is called the classical
Boussinesq equation (Musette and Conte, 1994). The (2þ1)-
dimensional DLWE has been extensively studied by many authors
(Chen et al., 2012; Lou, 1994, 1995; Ma and Zheng, 2006; Paquin
and Winternitz, 1990; Tang et al., 2002; Wen, 2012). Paquin and
Winternitz (1990) presented that the symmetry algebra of DLWE
is infinite-dimensional and possesses the Kac–Moody–Virasoro
structure. The more general W1 symmetry algebra of DLWE has
also been given in Lou (1994). In Lou (1995), both the direct
method and the non-classical Lie approach were applied to reduce
the (2þ1)-dimensional DLWE. Moreover, abundant localized
coherent structures were discussed and investigated. Dromion,
ring soliton and peakon were derived by Tang et al. (2002). Two
classes of fractal structures were obtained by introducing appro-
priate lower-dimensional localized patterns and Jacobian elliptic
functions (Ma and Zheng, 2006). Non-completely elastic interac-
tions between semi-foldons were discussed (Chen et al., 2012).
Fission and fusion interaction phenomena were studied analyti-
cally (Wen, 2012).

As we all know, one of the outstanding characteristics for
solitons is their completely elastic interactions between solitons,
namely, their amplitudes, velocities and shapes do not undergo
any change after the nonlinear interaction. However, recent
investigations show that for some special solutions of certain
(2þ1)-dimensional systems, the interactions between solitonic
excitations were not completely elastic since their shapes or
amplitudes were changed after their collisions (Chen et al., 2012;
Dai and Wang, 2009; Tang et al., 2002). Even the completely non-
elastic interaction (fusion phenomena) has been reported for
(1þ1)-dimensional (Ying, 2001) and (2þ1)-dimensional (Dai
and Chen, 2006c; Wen, 2012) systems, that is, some solitons fuse
one soliton after the nonlinear interaction. Actually, the solitary
wave fusion phenomena have been observed in many physical
fields like plasma physics, nuclear physics and hydrodynamics
(Serkin et al., 2001).

Single-valued line solitons used to analyze nonlinear and
dispersive long gravity waves traveling in two horizontal direc-
tions. For example, we can use them to describe roughly the tidal
bore on the Qiantang River in East China's Zhejiang province.
However, the tidal bore is too complicated to use only single-
valued functions to analyze the dynamical behaviors of water
waves. More precisely, we can use multi-valued functions to
describe them. In 1þ1 dimension, much effort (Li and Zhang,
2009) has been focused on multi-valued localized excitations such
as loop-soliton solutions since Konno et al. (1981) first reported
them in a nonlinear oscillation model of an elastic beam with
tension. In 2þ1 dimension, since Tang and Lou (2003) first
extended the (1þ1)-dimensional loop-soliton solutions into vari-
able separation solutions in 2þ1 dimension, multi-valued (semi-)
foldons have attracted a great deal of interest (Dai and Ni, 2006b;
Lei et al., 2013) because very complicated folded phenomena such
as folded protein (Trewick et al., 2002), folded brain and skin
surfaces, and many other kinds of folded biologic systems exist in
the real natural world (Goodman et al., 2002). The simplest multi-
valued (folded) waves may be the bubbles on (or under) a fluid
surface. Various ocean waves are really folded waves, too. Of
course, at present stage, it is impossible to make satisfactory

analytic descriptions for such complicated folded natural phenom-
ena. However, it is still worthwhile to start with some simpler
cases. In this paper, based on variable separation solution, we
discuss completely elastic interaction, non-completely elastic
interaction and completely non-elastic interaction between special
multi-valued dromion, peakon and foldon.

2. Variable separation solution via MLVSA

By means of the standard truncated Painlevé expansion (Tang
et al., 2002), one has a special Painlevé–Bäcklund transformation
for differentiable functions u and h in (1)

u¼ 2λμðln f Þxþu0; h¼ 2λμðln f Þxyþh0; ð2Þ
where f ¼ f ðx; y; tÞ is an arbitrary differentiable function of vari-
ables fx; y; tg to be determined, and u0;h0 are arbitrary seed
solutions satisfying the vcDLWE (1). In usual cases, by choosing
some special trivial solutions, we can directly obtain the seed
solutions. In the present case, it is evident that Eq. (1) possesses
trivial seed solutions h0 ¼ 0;u0 ¼ u0ðx; tÞ with an arbitrary function
u0ðx; tÞ.

Inserting (2) with the seed solutions into (1) yields an identical
trilinear equation

½ f 2∂xy� f ðf x∂yþ f y∂xþ f xyÞþ2f x f y�½ μβðtÞf xxþ f tþβðtÞf xu0� ¼ 0; ð3Þ
with αðtÞ ¼ μβðtÞ; λ¼ 1 and an arbitrary constant μ. If Eq. (3) has the
linear superposition solution

f ¼ Q0ðyÞþ ∑
N

i ¼ 1
Piðx; tÞQiðy; tÞ; ð4Þ

with arbitrary functions of indicated arguments, we have the
following simple variable separated equations

PktþμβðtÞPkxxþβPxu0þ ∑
M

l ¼ 1
CklðtÞPk ¼ 0; ð5Þ

Qkt� ∑
M

l ¼ 1
CklðtÞQk ¼ 0 ðl¼ 1;2;…;MÞ; ð6Þ

where CklðtÞðk¼ 1;2;…;N; l¼ 1;2;…;MÞ are arbitrary functions
of ftg.

Substituting all the results into (3), we obtain a general variable
separation solution for the vcDLWE

u¼ 2μ
∑N

k ¼ 1PkxQk

Q0þ∑N
k ¼ 1PkQk

þu0; ð7Þ

h¼ 2μ
∑N

k ¼ 1PkxQky

Q0þ∑N
k ¼ 1PkQk

�∑N
k ¼ 1PkxQkðQ0yþ∑N

k ¼ 1PkQkyÞ
ðQ0þ∑N

k ¼ 1PkQkÞ2

" #
; ð8Þ

where Pk and Qk satisfy (5) and (6).
If selecting N¼M ¼ 1;Q0 ¼ qðyÞ; fP1;Q1g ¼ fpðx; tÞ;1g, then (4)–

(6) have the following form:

f ¼ pðx; tÞþqðyÞ; ð9Þ

ptþμβðtÞpxxþβðtÞpxu0 ¼ 0; C11 ¼ 0: ð10Þ
Since u0 is an arbitrary seed solution, from Eq. (10) we can view p
as an arbitrary function of fx; tg, then the seed solution u0 is fixed
as

u0 ¼ �ptþμβðtÞpxx
βðtÞpx

:

Therefore, the special variable separation solution has the follow-
ing form:

u¼ 2μpx
pþq

�ptþμβðtÞpxx
βðtÞpx

; ð11Þ
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