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a b s t r a c t

This paper provides a simple analytical tool which can be used to calculate the wave-induced current beneath
long-crested (2D) and short-crested (3D) randomwaves. The approach is based on assuming the waves to be
a stationary narrow-band random process and by adopting the Forristall (2000) wave crest height distribution
representing both 2D and 3D Stokes second order random waves. An example is included to illustrate the
applicability of the results for practical purposes using data typical for field conditions; the significant values
of the Stokes drift and transport in deep water and in finite water depth are calculated. The present analytical
results can be used to make assessment of the wave-induced current based on available wave statistics.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The Stokes drift represents an important transport mechanism
in the ocean, which locally are responsible for material tracer
evolution (e.g. plankton, larvae, contaminated ballast water from
ships, oil spills). It is also involved in air-sea mixing processes
across the interphase between the atmosphere and the ocean. The
Stokes drift is obtained as the mean Lagrangian velocity giving the
water particle drift in the wave propagation direction. This drift
has its maximum at the surface and decreases towards the bottom.
The total mean mass transport is obtained as the integral over the
water depth of the Stokes drift; this is also referred to as the
volume Stokes transport by Rascle et al. (2008). More details of the
Stokes drift are given in Dean and Dalrymple (1984).

The Stokes drift and the volume Stokes transport are commonly
defined for regular waves. However, their characteristic quantities
are also defined for random waves in terms of the sea state
parameters significant wave height and characteristic wave periods
(e.g Rascle et al. (2008); Webb and Fox-Kemper (2011)). Rascle et al.
(2008) described a global data base for parameters associated with
ocean surface mixing and drift, which included the surface Stokes
drift and the volume Stokes transport among other parameters by
performing wave hindcast of the wave parameters. Rascle and
Ardhuin (2013) improved the hindcast results of Rascle et al.
(2008) by using new parameterizations of the physical processes
involved (more details are given in the references therein). Webb

and Fox-Kemper (2011) considered relationships between the wave
spectral moments and the Stokes drift in deep water at an arbitrary
elevation in the water column, and intercomparisons were made
using different spectral formulations. Myrhaug (2013, in press)
presented bivariate distributions of significant wave height with
surface Stokes drift and volume Stokes transport. Myrhaug (2013)
also presented bivariate distributions of spectral peak period with
these two Stokes drift parameters together with example of results
corresponding to typical field conditions.

The purpose of this study is to provide a simple analytical tool
which can be used to give estimates of the significant value of the
wave-induced current, i.e. the Stokes drift as well as the Stokes
transport, within a sea state of long-crested (2D) and short-crested
(3D) Stokes second order random waves. The approach is based on
assuming the waves to be a stationary narrow-band random process
and adopting the Forristall (2000) wave crest height distribution
representing both 2D and 3D random waves. The cumulative
distribution function of Stokes drift and Stokes transport for indivi-
dual random waves are determined, from which the statistical
properties of both quantities can be calculated. Thus this approach
is more mathematically sound than by using characteristic statistical
values of the waves in the regular wave formulas. An example is also
included to illustrate the applicability of the results for practical
purposes using data typical for field conditions.

2. Background for regular waves

Following Dean and Dalrymple (1984) the mean (time-aver-
aged) Lagrangian mass transport at an elevation z1 in the water
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column in finite water depth h is given as

uL ¼
ga2k2

ω

cosh 2kðz1þhÞ
sinh 2kh

ð1Þ

Here, g is the acceleration due to gravity, a is the linear wave
amplitude, k is the wave number corresponding to the cyclic wave
frequency ω given by the dispersion relationship ω2 ¼ gk tanh kh.
Eq. (1) indicates that the water particles drift in the wave
propagation direction; this drift has its maximum at the mean
free surface z1 ¼ 0 and decreases towards the bottom as z1-�h.
In deep water Eq. (1) reduces to

uL ¼
ga2k2

ω
e2kz1 ; ω2 ¼ gk ð2Þ

The Langrangian mass transport is often referred to as
Stokes drift.

The total mean (time- and depth-averaged) mass transport is
given as (Dean and Dalrymple, 1984)

M¼ ρga2k
2ω

ð3Þ

where ρ is the density of the fluid. M is often referred to as the
Stokes transport. More details of the Stokes drift and the Stokes
transport are given in Dean and Dalrymple (1984).

3. Present analytical calculation of wave-induced drift
in random waves

At a fixed point in a sea state with stationary narrow-band
random waves consistent with Stokes second order regular waves
in finite water depth, the non-dimensional nonlinear crest height,
wc ¼ ηc=arms is

wc ¼ âþOðkparmsÞ ð4Þ
Here â¼ a=arms is the non-dimensional linear wave amplitude,
where the linear wave amplitude a is made dimensionless with
the root-mean-square (rms) value arms. Moreover, OðkparmsÞ
denotes the second order (nonlinear) terms, which are propor-
tional to the characteristic wave steepness of the sea state, kparms,
where kp is the wave number corresponding to ωp (¼peak
frequency of the wave spectrum) given by the dispersion relation-
ship for linear waves (which is also valid for the Stokes second
order waves):

ω2
p ¼ gkp tanh kph ð5Þ

Now Eq. (4) can be inverted to give â¼wc�OðkparmsÞ. By
substituting this in Eq. (1), the non-dimensional Stokes drift for
individual random waves, u¼ uL=uLrms, is given as

u¼w2
c ð6Þ

where

uLrms ¼
ga2rmsk

2
p

ωp

cosh 2kpðz1þhÞ
sinh 2kph

ð7Þ

In deep water Eq. (7) reduces to

uLrms ¼
ga2rmsk

2
p

ωp
e2kpz1 ; ω2

p ¼ gkp ð8Þ

Similarly, the non-dimensional Stokes transport for individual
random waves, m¼M=Mrms, is given as

m¼w2
c ð9Þ

where

Mrms ¼
ρga2rmskp

2ωp
ð10Þ

It should be noted that strictly speaking, the non-dimensional
Stokes drift (and the non-dimensional Stokes transport) is related
to both wave crest height and wave number. For example, in deep
water, ω2 ¼ gk and ω2

p ¼ gkp, and consequently the non-
dimensional Stokes transport is given by

m¼M=Mrms ¼
ρga2k
2ω

� �
ρga2rmskp

2ωp

� �
¼ a2

a2rms

ffiffiffiffiffi
k
kp

s
¼wc

2

ffiffiffiffiffi
k
kp

s
:

,

However, under the assumption of narrow-band wave spec-
trum (i.e. k¼kp), the relations suggested in this paper are accep-
table approximations.

Now the Forristall (2000) parametric crest height distribution
based on simulations using second order theory is adopted. The
simulations were based on the Sharma and Dean (1981) theory;
this model includes both sum-frequency and difference-frequency
effects. The simulations were made both for 2D and 3D random
waves. A two-parameter Weibull distribution with the cumulative
distribution function (cdf) of the form

PðwcÞ ¼ 1�exp � wcffiffiffi
8

p
α

� �β
" #

; wcZ0 ð11Þ

was fitted to the simulated wave data. The Weibull parameters α
and β were estimated from the fit to the simulated wave data, and
are based on the wave steepness S1 and the Ursell parameter UR

defined by

S1 ¼
2πHs

g T2
1

ð12Þ

and

UR ¼
Hs

k21h
3 ð13Þ

Here Hs is the significant wave height, T1 is the spectral mean
wave period and k1 is the wave number corresponding to T1. The
wave steepness and the Ursell number characterize the degree of
nonlinearity of the waves in finite water depth. At zero steepness
and zero Ursell number fits were forced to match the Rayleigh
distribution, i.e. α¼ 1=

ffiffiffi
8

p
� 0:3536 and β¼ 2. Note that this is the

case for both 2D and 3D linear waves. The resulting parameters for
the 2D-model are

α2D ¼ 0:3536þ0:2892S1þ0:1060UR

β2D ¼ 2�2:1597S1þ0:0968U2
R ð14Þ

and for the 3D-model

α3D ¼ 0:3536þ0:2568S1þ0:0800UR

β3D ¼ 2�1:7912S1�0:5302URþ0:284U2
R ð15Þ

Forristall (2000) demonstrated that the wave set-down effects
were smaller for short-crested than for long-crested waves, which
is due to that the second-order negative difference-frequency
terms are smaller for 3D waves than for 2D waves. Consequently
the wave crest heights are larger for 3D waves than for 2D waves.

The sum-frequency and difference-frequency effects arise from
adding together all the frequency components which give second
order terms with frequencies equal to the sum of two pair
frequencies (sum-frequencies), and second order terms with
frequencies equal to the difference of two pair frequencies
(difference-frequencies). The terms with the sum-frequencies
represent the short period second order wave components, while
those with the difference-frequencies represent the long period
second order wave components. The second order effects increase
with decreasing water depth. The difference-frequency terms have
almost no effect in deep water (for a narrow-band process it is
zero). But as the water depth decreases, these terms become
more significant, and are almost of the same magnitude as the
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