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a b s t r a c t

A code developed on the basis of the flux-difference splitting scheme and the hybrid Cartesian/immersed
boundary method is applied for two-dimensional simulation of internal waves generated by a foil that is
translating and pitching simultaneously near a material interface. The interface is captured as a moving
contact discontinuity without any additional treatment along the interface. An approximate Riemann
solver is used to estimate numerical fluxes across the discontinuity. Immersed boundary nodes are
distributed within an instantaneous fluid domain on the basis of edges crossing a boundary. Dependent
variables are reconstructed at the immersed boundary nodes along local normal lines to the boundary.
The present results on the propagation of internal solitary waves generated by the collapse mechanism
are compared with other computational results and good agreement is found. The code is validated
through comparisons with recent experimental results on the waveform inversion from depression type
to elevation type during the interaction between an internal solitary wave and a trapezoidal obstacle.
Internal waves generated by a translating and pitching foil are simulated. Grid independence tests of the
computed results are carried out. Pairs of traveling vortices are correlated to local sinking or rising at the
interface.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Internal waves are related to a wide range of engineering
problems such as oil and water flows or ocean acoustics. In the
ocean, a thin pycnocline separates two well-mixed layers so that
internal waves are modeled as incompressible flows of two layers.
Because of the small density difference, internal waves of great
amplitude and wavelength have frequently been observed. Song
et al. (2011) compared the effects of internal waves and surface
waves on marine structures and reported that the low frequency
of the internal waves causes large horizontal displacement of a
spar platform. The periodic variations of horizontal velocity
modulate the distribution of surface roughness, and they can be
detected by synthetic aperture radar (SAR). This implies that the
internal waves can be used to detect a submarine. Chang et al.
(2006) carried out a numerical simulation for internal waves
generated by a submarine.

Many numerical methods have been developed to analyze
flows of incompressible fluids of different densities. Most of
the methods introduce the δ-function formulation, in which
the density variation is smoothed over a few grid cells to
avoid difficulties with the discontinuity of the density field.

The robustness of a scheme can be attained by the smoothing.
However, numerical smearing across the material interface cannot
be avoided and the additional treatment required along the inter-
face may cause difficulties as the interface undergoes complicated
deformation. Shin (2004) used the ghost fluid method on unstruc-
tured grids to handle the discontinuity across an interface without
any smoothing. However, the method requires tracking the mate-
rial interface and assigning dependent variables for the ghost cells.

For problems that contain the discontinuities within a domain,
many methods based on the Riemann solver have been success-
fully developed. For incompressible free surface flows, Kelecy and
Pletcher (1997) suggested a free surface capturing method that is
based on the approximate Riemann solver. Because the scheme
uses the solution of a hyperbolic problem with a discontinuous
initial condition, the propagation of the discontinuities can be
captured without any additional treatment along the interface. Pan
and Chang (2000) applied Roe's flux-difference splitting scheme,
which is a kind of approximate Riemann solver, to simulate water
waves generated by a surface ship. Qian et al. (2006) combined
Roe's flux-difference splitting scheme and the Cartesian cut-cell
method to simulate free surface flows with moving bodies.

Due to its inherent flexibility in handling a boundary, the non-
boundary conforming methods have been developed by many
researchers. Peskin (1972) suggested the immersed boundary
method to simulate flows inside a heart. Gilmanov and
Sotiropoulos (2005) suggested the hybrid Cartesian/immersed
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boundary method, in which the modified domain is a subset of the
original instantaneous fluid domain. This feature enables the
method to handle a very thin body and inviscid flows. Shin et al.
(2007) suggested a new criterion for immersed boundary nodes on
the basis of edges crossing a boundary so that the discretized flow
problem is guaranteed to be well-posed and the scheme can
handle an infinitesimally thick body. Shin et al. (2009) applied
the hybrid Cartesian/immersed boundary method to simulate a
fluid-structure interaction of a flexible heaving foil.

Shin et al. (2012) suggested a new method, in which the flux-
difference splitting scheme and the hybrid Cartesian/immersed
boundary method are combined to simulate free surface flows
with moving or deforming boundaries. This method was validated
through comparisons of its results with those of experiments and
other numerical methods for various free surface flows, and then
the code was applied to simulate a three-dimensional violent
sloshing in a moving spherical tank. In this study, the code is
expanded to simulate internal waves, where the density ratio is
very close to unity. To validate the code for internal waves, the
internal solitary waves generated by the collapse mechanism are
simulated and the results are compared with other numerical
results reported by Nakayama (2006). Moreover, to validate the
code for an interaction between internal waves and a body
boundary, the waveform inversion from depression type to eleva-
tion type is simulated for an internal solitary wave that propagates
over a trapezoidal obstacle. The results are compared with recent
experimental results on waveform inversion reported by Cheng
and Hsu (2010). The validated code is applied to simulate internal
waves generated by a pitching foil with a constant speed as a
simplified model for effects of maneuvering of an underwater
vehicle near a density-cline on generated internal wave patterns.

2. Governing equations

The governing equations are those of mass and momentum
conservation for unsteady flows of immiscible and incompressible
fluids. The material interface is regarded as a moving contact
discontinuity in a density field, whereas the pressure and the
normal velocity should be continuous across the material inter-
face. To allow for the discontinuity within the domain, the
governing equations are written in the integral conservation law
form as follows:
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where Ω is the control volume, S is the control surface, Q is the
vector of conserved variables, Finv and Fvis are the inviscid and
viscous flux vectors, and B is the body force due to gravity. The
vectors Q, Finv, and Fvis are given as follows:
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where ρ is the density, ui is the ith velocity component, p is the
pressure, ni is the ith unit normal vector component, θ is the
normal velocity at the control surface, and τij is the shear-stress
tensor.

The first equation in the set of conservation laws determines
the time derivative of the density field on the basis of mass
conservation, and the last equation enforces the incompressibility
constraint on both fluids. Although the instantaneous material
interface can be identified on the basis of the calculated density
field, the method does not require any additional treatment along
the interface. The requirement for continuity of the normal
velocity across the interface is fulfilled, because of the

incompressibility constraint on both fluids. Once the normal
velocity is continuous across the interface, the pressure should
also be continuous across the interface to ensure momentum
conservation, regardless of the discontinuity in the density field.

3. Numerical flux computation using the flux-difference
splitting scheme

Because discontinuity is allowed in the domain and there is no
additional treatment across the interface, the fluxes should be
calculated using a scheme that can handle discontinuities. In this
study, the flux-difference splitting scheme, which is a kind of
approximate Riemann solver, is used to estimate the numerical
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Fig. 1. Sketch of the generation of internal solitary waves by the collapse
mechanism.
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Fig. 2. Wave elevations computed for t¼15 s according to the depth of the initial
disturbance with ξ0¼0.2 m.
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Fig. 3. Wave elevations computed for t¼15 s according to the width of the initial
disturbance with η0¼0.025 m.
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