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a b s t r a c t

A new method is presented to directly derive the nonlinear equations of motion (EOMs) of a floating

wind turbine system using the theorem of conservation of angular momentum and Newton’s second

law. The methodology considers the system as two rigid bodies: the tower and the rotor-nacelle

assembly (RNA). The large-amplitude rotation of the tower is described by the 1-2-3 sequence Euler

angles, which offer accurate nonlinear coupling between motions in 6 degrees of freedom (DOFs). Two

additional DOFs of the RNA relative to the tower, nacelle yaw and rotor spin, are prescribed by

mechanical control and are also included in the EOMs of the entire system. Results from the EOMs are

transformed among different coordinate systems at every time-step for use in the computation of

hydrodynamics, aerodynamics and restoring forces, which preserves the nonlinearity between external

excitation and structural dynamics. The new method is verified by critical comparison of simulation

results with those of the popular wind turbine dynamics software FAST. The concept of highly

compliant floating wind turbines is introduced. The large-amplitude motions and gyroscopic moments

of one of these smaller, lighter structures is simulated in an example.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction and background

Environmental, aesthetic and political pressures continue to push
for siting offshore wind turbines beyond sight of land, where waters
tend to be deeper, and use of floating structures is likely to be
considered. Design of a floating wind turbine support structure
capable of maintaining a near-vertical tower requires buoyancy far
exceeding the weight of the equipment being supported. Savings
could potentially be realized by reducing hull size, which would
allow more compliance with the wind thrust force in the pitch
direction. The loss of blade swept area has been shown to have a
modest effect on energy capture (Wang and Sweetman, 2011).
Increased dynamic motions does not necessarily correspond to
increased dynamic load. For sinusoidal motion, the amplitude of
the inertial loads is the product of the moment of inertia, amplitude
of the motion and the square of the circular frequency. Decreasing
the stiffness reduces the pitch and roll natural frequencies, which
decreases inertial loading, but may require special consideration in

the design of the rotor speed and blade-pitch controllers. Design of
these increasingly compliant floating towers will make computation
of structural dynamics both more challenging and more important,
mainly because of the effects of gyroscopic moments. For conven-
tional, stiff, bottom-founded structures, these moments are primar-
ily generated by mechanical precession of the spin axis into the
shifting winds, and so are limited by the maximum yaw rate
(Henderson and Vugts, 2001). However, no such limit exists for
gyroscopic moments of floating structures because they result from
both shifting winds and irregular motions of the tower. New
methodologies must be developed and employed to simulate the
motions of new design concepts.

The compliant floating wind turbine system can be considered as
a multi-body system including tower, rotor, nacelle and other moving
parts, which are mechanically connected by the yaw bearing, hub,
etc. One conventional analytical method to simulate the dynamics
motions of such a system would be the Newton–Euler (NE) equations
or Euler–Lagrange (EL) equations (Saha, 1999). The NE equations are
usually established by separating the free-body diagrams of each
rigid body in the system. For example, Stoneking (2007) presents the
derivation of the exact nonlinear dynamic equations of motion for
a multi-body spacecraft connected by spherical gimbal joints.
Matsukuma et al. (Matsukuma and Utsunomiya, 2008) employ NE
equations combined with constraint conditions associated with the
joints between rigid bodies to analyze the dynamic response of a
2-MW downwind turbine mounted on a spar-type floating platform
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for pitch amplitudes up to around 101 in steady wind, but no waves,
and conclude that the platform motions are meaningfully influenced
by gyro moments associated with rotor rotation. The EL equations
apply energy methods to establish equations of motion for
generalized degrees of freedom. Overall, the commonly used NE
method computes the internal forcing between rigid bodies, and
is excellent for applications in which the internal forcing has
significant concern. However, for simulation of general motion of
a system, these internal forces are not needed at every time step.
The EL method is efficient for the solution of motion, while the
derivation of partial derivatives of energy about related general-
ized DOFs is laborious. Additionally, the number of equations
is equal to that of DOFs for previous conventional methods:
the number of equations of the NE method is six times of number
of rigid bodies within the multi-body system; the number of
equations for the EL method is just that of the generalized DOFs.
Kane’s method combines the advantages of both the NE and EL
methods. As the well-recognized wind turbine dynamics analysis
software, the NREL FAST aero-elastic simulator (Jonkman and
Buhl, 2005; Jonkman, 2007) uses Kane’s method to derive the
EOMs for the floating wind turbine system with rotations of
platform less than 201. In FAST, the hydrodynamic radiation-
diffraction analysis package WAMIT (WAMIT 6.4, 2008) can be
used to provide hydrodynamic forcing in the case of small-
amplitude motions.

The work presented here is also a combination of the NE and
EL methods for the computation of the general motion using only
six equations no matter how many DOFs the system has. It makes
direct use of the known interactions between mechanical com-
ponents in the wind turbine, which are directly controlled or
explicitly defined, to derive the rotational equations of motion of
the entire wind turbine system. The conventional Euler dynamic
equations are normally applied to only one rigid body, while the
known relationships between the rigid body components enable
the application of the theorem of conservation of angular momen-
tum to the entire system. Transformation matrixes are used to
transfer the angular momentum of each rigid body to a unified
coordinate system to obtain the total angular momentum of the
entire system, the derivative of which is equal to the sum of
external moments applied to the system. The resulting rotational
EOMs are combined with translational equations governed by
Newton’s second law of the entire multi-body system to develop a
system of six equations. A key advantage of the new methodology is
that the EOMs use fewer equations than previous conventional
methods because only three rotational DOFs of the base body
(tower) described by Euler angles and three translational DOFs need
to be solved. Known relative DOFs along the rigid-body chain
(nacelle yaw and blade spin) do not require additional EOMs.
Structural flexibility of individual bodies cannot be considered using
this method. However, neglecting these effects is reasonable for
compliant design in cases where the global motions are dominated
by first order rigid-body motions that are much larger than the
higher modes allowed by structural flexibility. Mechanical systems
with known geometric relationships between components are
common, especially in rotating machinery. Thus, the methodology
here is developed for floating wind turbine systems, but is broadly
applicable to other types of interconnected dynamic mechanical
systems.

The nonlinearities of various external forces and moments due
to their coupling with structural motions are addressed in this
work. Aerodynamics and hydrodynamics are calculated including
the motion of body through the fluid, and the instantaneous
position of the structure is accurately computed to incorporate
nonlinearities of both the mooring and hydrostatics. In the numer-
ical simulation, the motions and external excitation (including both
external forces and moments) are transformed between various

coordinate systems at each time step using matrices developed in
terms of Euler angles for the rigid body. Thus, the full nonlinear
coupling between external excitation and large-amplitude motion of
the tower is preserved.

2. Coordinate systems and Euler angles

The methodology considers the system as two rigid bodies: the
tower is the complete structural assembly, including the buoyant
hull, that supports the rotor-nacelle assembly (RNA); the RNA is
the complete assembly that can mechanically yaw relative to the
tower. The implementation of the new method requires use of
several coordinate systems to derive the EOMs for the complete
system. The external excitation applied in the dynamic equations
is computed consecutively and projected into the corresponding
coordinate systems. Fig. 1 shows both the ðX,Y ,ZÞ and the
ðXM ,YM ,ZMÞ systems, which are earth-fixed global coordinate
systems with the origin located at the center of mass (CM) of
the entire system and still water level respectively in case of
equilibrium status of the system with zero displacements. The
ðxt ,yt ,ztÞ and the ðA,B,CÞ systems are body fixed and originate at
the CM of the tower and RNA, respectively. The CM of the RNA, GR,
is assumed to be on the centerline of the tower to guarantee that
the CM of the system, Gs, is fixed on the tower. The ðxs,ys,zsÞ

system is parallel to ðxt ,yt ,ztÞ and originates at the instantaneous
CM of the entire system, which is also assumed to be on the
centerline of the tower. Thus ðxs,ys,zsÞ coincides with the ðX,Y ,ZÞ
system for zero displacement.

The ðX,Y ,ZÞ and ðxs,ys,zsÞ coordinate systems are used for
application of both the Newton’s second law and the theorem of
moment of momentum on the entire system. Two body-fixed
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Fig. 1. Coordinate systems used in the application.
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