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a b s t r a c t

The fitting of models to data is essential in nuclear data evaluation, as in many other fields of science. The
models may be necessary for interpolation or extrapolation, but they are seldom perfect; there are model
defects present which can result in severe biases and underestimated uncertainties.
This work presents and investigates the idea to treat this problem by letting the model parameters vary

smoothly with an input parameter. To be specific, the model parameters for neutron cross sections are
allowed to vary with neutron energy. The parameter variation is limited by Gaussian processes, but
the method should not be confused with adding a Gaussian process to the model.
The performance of the method is studied using a large number of synthetic data sets, such that it is

possible to quantitatively study the distribution of results compared to the underlying truth. There are
imperfections in the results, but the method is seen to readily outperform fits without the energy-
dependent parameters. In particular, the estimates of uncertainty and correlations are much better.
Hence, the method seems to offer a promising route for future treatment of model defects, both for
nuclear data and elsewhere.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The fitting of various observables to experimental data plays a
central role in nuclear data (ND) evaluation. This paper is directed
towards ND evaluation, but the idea can be applied to any case
where a parametrized model is fitted to data, which is essential
in a wide range of science and applications. For the reader unac-
quainted to ND: an important subset of ND are neutron cross sec-
tions, describing the probabilities for different types of interactions
between a neutron and a nuclide. There is a large number of impor-
tant nuclides, plenty of different possible interactions, and the
cross sections depend on the neutron energy. This paper considers
the simultaneous fitting of several such cross sections to quite
sparse experimental data, with the aid of imperfect models of the
underlying physics. Figs. 2 and 3 (of the results section) can help
illustrating the considered situation.

In regions where there are plenty of data, one can directly use
the experimental data together with some assumption on reason-
able smoothness, as in the ‘‘Neutron cross section standards”
(Carlson et al., 2009). For a lot of observables, there are more or less

large gaps in the data, which make it necessary to use nuclear reac-
tion models to help in the long-range inter- or extrapolation (with
respect to, e.g., energy, observable, and even nuclide).

One way to implicitly include the model is to generate a prior
distribution for the observables based on the model, as in what
nuclear data evaluators refer to as General(ized) Least Squares
(GLS, Smith, 1991; Herman et al., 2011), or in Unified Monte
Carlo-Garage (UMC-G, Smith, 2007). This has the disadvantage
that, even though the model impacts the results trough the prior,
the model is abandoned in the actual fit. This leads to observables
which cannot be reproduced by the model, and, thus, important
physics may be broken. An alternative is to actually fit the param-
eters of the model, as in Unified Monte Carlo-Breakfast (UMC-B,
Capote et al., 2012), or using a deterministic non-linear fitting algo-
rithm such as Levenberg–Marquardt (Levenberg, 1944; Marquardt,
1963; Helgesson and Sjöstrand, 2017. Such methods are naturally
compatible with Total Monte Carlo (TMC, Koning and Rochman,
2008, 2012), stochastic uncertainty propagation from model
parameters to applications. There are also alternative fitting tech-
niques related to TMC, such as Bayesian Monte Carlo (Koning,
2015) which is used for the production of later TENDL libraries
(Koning and Rochman, 2012).

A disadvantage with fitting the parameters of the model is that
such methods are more sensitive to model defects (Helgesson et al.,
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2017), i.e., that the model is not able to exactly reproduce the true
physics underlying the data, whatever the parameters are. This
typically leads to biased results with strongly underestimated
uncertainties (Helgesson et al., 2017; Helgesson and Sjöstrand,
2017). The other class of fitting techniques described above (such
as GLS) will also give erroneous results if there are model defects
present (Helgesson et al., 2017). Further, it is not controversial to
claim that there are, to some extent, model defects in most ND
evaluation situations, so the issue should be treated somehow.
Schnabel and Leeb have used Gaussian processes (GPs) to address
the problem of model defects for some nuclear data problems
(Schnabel, 2015; Schnabel and Leeb, 2016), and the results appear
successful. The authors of this paper have applied GPs to fit peaks
of arbitrary shape to an histogram of data, and by using synthetic
(simulated) data also shown that it gives desired results
(Helgesson and Sjöstrand, 2017). In both these cases, a term
describing the defect is added to the physics model, and this term
is modeled by a GP.

In this paper, we present and study the idea to let the parame-
ters of the model depend on the neutron energy E (an input vari-
able), and to let this energy dependence be limited by GPs. This
has a number of potential advantages over the ‘‘usual” use of GPs
to treat model defects. These are discussed a little more in Sec-
tion 3.2, but we could already mention that physical constraints
are guaranteed to be conserved at each E, without the need to care-
fully define the GP to include these constraints. It would also be
more straightforward to incorporate this technique into the TMC
and TENDL frameworks, to produce complete and consistent
nuclear data for a very wide range of nuclides.

The paper starts in Section 2 by introducing some background
knowledge, including a more formal description of the problem
to address, and a brief introduction to GPs. Section 3 presents the
method of using energy-dependent parameters. This is followed
by validating the method in Section 4 using synthetic (but rather
realistic) data, allowing a comparison of the results to the truth
which underlies the data. As customary, the paper ends with con-
clusions and an outlook for the future development of this work.

2. A quick review of definitions and prerequisites

2.1. The problem at hand + some notation

We consider a part of the nuclear data evaluation process: using
experimental data and nuclear reaction models to estimate a set of
physical observables and the covariances associated to them. We
limit the study to the cross sections of 17 reaction channels
(referred to as channels in the following) for a specific nuclide,
56Fe, for neutron energies between 1 MeV and 30 MeV. In reality,
the 56Fe cross sections show strong resonances up to a few MeV.
In this paper, we consider average cross sections and neglect the
resonances. Since we work with synthetic data to study the perfor-
mance of the method, neglecting the resonances enables us to
assume that the cross sections vary smoothly with energy. The
cross sections of 56Fe were chosen because of their importance
for estimating radiation damage in fission and fusion applications.

Formulated mathematically, we have a data vector
y ¼ y1; y2; . . . ; ynð ÞT which is an observation of a random vector Y.
We assume that Y is normally distributed around the underlying
truth ftrue:

Y ¼ ftrue þ e; e � Nð0;�Þ: ð1Þ
The random vector e describes the experimental error and, thus,

� is the experimental data covariance matrix. This is typically not
diagonal, because of systematic uncertainties.

We also have a function f ðx; bÞ, which is a model used to
approximate the truth. In practice, f ðx; bÞ could be a nuclear reac-
tion code such as TALYS (Koning et al., 2015). In this work, we
use a TALYS-like model which executes faster, but like TALYS it is
non-linear and it is intended to contain much of the complexity
of TALYS from a data fitting point of view (details in Appendix
A). The function f ðx; bÞ depends on an input variable x (details in
the next sentence) and a vector of model parameters b. To simplify
the notation (in some respects), we include a selection of the chan-
nel in the input to f, by defining the input variable x as x ¼ ðE; cÞ,
where E is the neutron energy and c is a discrete variable determin-
ing the channel. All the input data are summarized into the ‘‘vec-
tor” x ¼ x1; x2; . . . ; xnð ÞT. In a sense, x is a length 2 vector and x is
an n� 2 matrix. However, we will not exploit the matrix structure
of x, so we use the notation for scalars and vectors for x and x,
respectively (italics and boldface with serifs, respectively). We will
sometimes write EðxÞ to denote the energy associated with x, and

define EðxÞ ¼ Eðx1Þ; Eðx2Þ; . . . ; EðxnÞð ÞT.
As a consequence of the definition of x, we consider the model

function f ðx; bÞ to be a single-valued function even if we have sev-
eral reaction channels. We further define fðx; bÞ ¼ f ðx1; bÞ;ð
f ðx2; bÞ; . . . ; f ðxn; bÞÞT.

If the physical model is able to perfectly reproduce the truth,
there is a set of parameters btrue such that ftrue ¼ fðx; btrueÞ, and
Y ¼ fðx; btrueÞ þ e; e � Nð0;�Þ: ð2Þ
This is the usual formulation of a non-linear least squares problem,
which often can be solved using the Levenberg–Marquardt (LM)
algorithm (Levenberg, 1944; Marquardt, 1963; Helgesson and
Sjöstrand, 2017), or using, e.g., Markov Chain Monte Carlo (Press
et al., 2007).

However, there are often model defects present, i.e., the model is
not able to perfectly reproduce the truth. In other words, there is
no parameter set such as btrue. If so, the consequences of assuming
that there are no model defects can be severe (Helgesson et al.,
2017; Helgesson and Sjöstrand, 2017; Schnabel, 2015): the devia-
tions from the underlying truth can be much too large compared
to the estimated uncertainties.

Gaussian processes (see Section 2.2) have previously been used
to treat model defects (see Section 2.3). In this paper, we also use
GPs for this purpose, but in a novel way (see Section 3.1).

The model parameters b are based on the ‘‘adjust” parameters
of TALYS (Koning et al., 2015), which all have default values of 1
and are allowed to take values in [0.5, 2] or [0.1, 10] depending
on the parameter. However, the parameters are transformed using

bj ¼
aj � 1; aj P 1

1� 1=aj; aj < 1

�
; ð3Þ

where aj is the corresponding adjust parameter. In other words,
the parameters b describe the change from the default, relative to
the least of the default and the resulting parameter value (bj ¼ �1
means aj ¼ 0:5, for example). In this way, the parameters b can be
symmetrically distributed around 0, and the ranges for the adjust
parameters translate to ½�1;1� and ½�9;9�, respectively. The param-
eters are approximately restricted to these bounds by assuming a
prior distribution for each bj which is centered around 0 with stan-
dard deviations of 1/3 and 3, respectively. This rather uninformed
prior is not expected to impact the results much, except for giving
some numerical advantages.

2.2. Gaussian processes (GPs)

This section intends to present the most central concepts of GPs
that are necessary for our purposes. In Helgesson and Sjöstrand
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