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a b s t r a c t

There are many studies on the Monte Carlo method to generate multi-group cross sections. However,
there are not enough studies about the propagation of statistical uncertainty in multi-group cross sec-
tions. The purpose of this study is to generate Monte Carlo-based multi-group cross sections for the
deterministic code and to evaluate the uncertainty of reactor physics parameters propagated from the
statistical uncertainty in multi-group cross sections. To achieve this goal, new formulations for uncer-
tainty propagations were developed. By applying the developed formulations, the propagated uncertainty
of eigenvalue was quantified. The accuracy of the calculated uncertainty was validated by using the direct
sampling method. Through this study, it is possible to accurately evaluate the uncertainty propagated
from the statistical uncertainty in multi-group cross sections. This study can support the reliability of
multi-group cross sections created by Monte Carlo method. In addition, the individual contribution of
the statistical uncertainty of multi-group cross sections to the uncertainty of the eigenvalue can be cal-
culated. It can provide the helpful information to produce accurate multi-group cross sections by Monte
Carlo method.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The multi-group cross section (MGXS) is required in the deter-
ministic method to solve the transport equation. As the neutron
spectrum is unknown before solving the transport equation, the
approximated spectrum is used when MGXS are generated by
the deterministic codes. In the deterministic method, the space
of a system, energy of the neutron, and direction of the neutron
are grouped approximately. These approximations and the
assumed spectrum cause uncertainties in MGXSs. The MGXS is
well known as the main cause of the uncertainty of the calculated
reactor physics results (Alpan and Haghighat, 2005). To obtain the
accurate MGXS, properly approximated parameters are required.
However, when generating the MGXS of new types of reactors, it
is difficult to set appropriate approximations and spectrums. To
overcome these shortcomings of the deterministic method,
Redmond (1997) proposed the use of the Monte Carlo (MC)
method to generate MGXSs. In the MC method, there are almost
no approximations of the space, energy, and direction. In addition,
as continuous-energy cross sections and exact descriptions of the
geometry of a system are used, it is possible to simulate the exact
behavior of neutrons in the given reactor system. There are many

studies related to generating MGXSs by the MC method
(Pounders, 2006; Pirouzmand and Mohammadhasani, 2015; Park
et al., 2015). The main idea of these studies is to use the MC
method to create MGXSs and to adopt the created MGXSs in the
deterministic method for the calculation of the reactor physics
parameters.

The results of the MC calculation are obtained by sampling the
behavior of neutrons. The statistical uncertainties occur in this pro-
cess. The statistical uncertainties of MGXSs are propagated when
MGXSs are employed in the deterministic calculation. The uncer-
tainty propagation analysis should be completed for the reliability
of the results. However, few studies about propagation of the sta-
tistical uncertainty of MGXSs have been carried out. Park et al.
(2013) performed a study to quantify the uncertainty of few-
group constants generated by the MC method. However, some
assumptions were made in the study: pre-processed covariance
data files were used for the propagation calculation. These covari-
ance data files include the covariance error of evaluated nuclear
data files (ENDF). To calculate the propagation of the statistical
uncertainty caused by the MC calculation, using the covariance
that is created in the MC calculation is more appropriate instead
of using the covariance of the evaluated data.

The aim of this study is to calculate the propagation of statisti-
cal uncertainties in the MGXS generated by the MCmethod. For the
propagation analysis of the statistical uncertainty in MGXSs, the
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linear uncertainty propagation formula (Bevington and Robinson,
2003) was used. New formulations were derived to quantify the
covariance of generated MGXSs. By applying the developed formu-
lations, the uncertainty of the eigenvalue propagated from the sta-
tistical error of MGXS was evaluated in two simple problems. The
quantified uncertainties were validated by the direct sampling
method (Bostelmann et al., 2015).

2. Background for the MC-based MGXS generation

The definition of the MGXS (Redmond, 1997) is as follows:

X
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¼
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Eg

PJ
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where
P

a;g denotes the a-type g group cross section, ra;jðEÞ denotes
the a-type microscopic cross section of the j-th isotope of a material
as a function of energy E, nj denotes the associated atom fraction of
the j-th isotope of a material, q denotes the atomic density of the
material, and UðEÞ denotes the neutron flux as a function of energy
E. The numerator of Eq. (1) is the group reaction rate and the
denominator is the group flux. To calculate the group reaction rate
and group flux in the MC calculation, the track-length tally estima-
tor can be used (Redmond, 1997). The group reaction rate is calcu-
lated by the track length estimator as
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wherewi is the weight of the i-th particle and li is the track length of
the i-th particle in volume V, RaðEÞ is a macroscopic cross section as
a function of energy, w0

i is the original weight of the i-th particle,
and N is the number of sampled particles. The track length estima-
tor to calculate the group flux is written as
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In the MC calculation, results are obtained after the transporta-
tion of sampled particles. In this process, every single transporta-
tion has each calculated value. The final results are obtained by
averaging the values of each transportation. The variance of the
mean is used to describe the statistical uncertainty of the MC cal-
culation. The variance of the MGXS generated by the MC method
was derived by Redmond. The derivation will be simply intro-
duced. Equation (1) can be rewritten as

�x ¼ �u
�v ; ð4Þ

where �x is the mean MGXS, �u is the mean group reaction rate, and �v
is the mean group neutron flux. As the MGXS is a function of two
variables, using the uncertainty propagation formula (Bevington
and Robinson, 2003), the variance of the MGXS is expressed as
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where S2x is the variance of x and Covðu;vÞ is the covariance
between u and v. The covariance is defined as

Covðu;vÞ � 1
N � 1

XN
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ðui � uÞðv i � vÞ; ð6Þ

where ui is the macroscopic cross section times the track length on
i-th particle and v i is the calculated track length on i-th particle.
According to Redmond, the variance of MGXS is calculated as

S2x ¼
1

N�1

XN
i¼1

ðui � uÞ2
 !

1
v

� �2 þ XN
i¼1

ðv i � vÞ2
 !

ð� u
v2Þ2

þ2
XN
i¼1

½ðui � uÞðv i � vÞ�
 !

1
v

� � � u
v2

� �

2
666664

3
777775;

¼ N
N� 1

ðu2 � �u2Þ 1
�v2

� �
þ ðv2 � �v2Þ �u2

�v4

� �
� 2ð�u�v � �u� �vÞ �u

�v3

� �� �
:

ð7Þ
The variance of the sample mean of the MGXS is expressed as
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3. Proposed uncertainty propagation method of statistical
uncertainties

Let the reactor physics parameter X be calculated with the
MGXS created by the MC method. The parameter X is a function
of the MGXSs. If there are l numbers of MGXSs, X can be expressed
as

X ¼ XðC1;C2; � � � ; ClÞ; ð9Þ
where Cl denotes the l-th MGXS generated by the MC method. To
calculate the uncertainty of X propagated from statistical uncertain-
ties in MGXSs, the linear uncertainty propagation formula
(Bevington and Robinson, 2003) can be used:

S2X ¼ GTVG; ð10Þ
where V is the covariance matrix and the i-th element of the vector
G is @X=@Ci. To calculate the covariance of MGXSs, the sum of two
MGXSs Ct can be defined as

Ct � Ck þ Cl: ð11Þ
Applying the uncertainty propagation formula, the variance of

Ct is given as

S2Ct
¼ S2Ck

þ S2Cl
þ 2CovðCk;ClÞ: ð12Þ

As Ct is a function of the k-th group reaction rate, k-th group
flux, l-th group reaction rate, and l-th group flux, Eq. (11) can be
rewritten as

Ct ¼ uk

vk
þ ul

v l
; ð13Þ

where uk denotes the reaction rate of the k-th group calculated by
the MC method and vk denotes the group flux of the k-th group cal-
culated by the MC method. By the uncertainty propagation formula,
the variance of Ct can be calculated as
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