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a b s t r a c t

Two methods originally developed for discrete-time Markov chains are adopted for the solution of the
first-order ordinary differential equation of nuclide transmutation. Both methods use Taylor series
expansions, which facilitates software implementation. The methods are known, respectively, as the uni-
formization method and the aggressively truncated Taylor series method. The theory and algorithmic
aspects of the two methods, as far as is relevant for software implementation, are presented. A few
numerical test problems are employed to compare the two methods and to obtain an impression of their
capabilities.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In the domain of nuclear reactor physics, the temporal tracking
of the nuclide inventory of a variety of burnable (depletable) mate-
rials in a reactor core plays a key role (Bell and Glasstone, 1985;
Henry, 1986). This tracking involves the solution of a first-order
ordinary differential equation for various groupings of nuclides
which we refer to as transmutation groups. A transmutation group
is formed by a collection of nuclides that are linked via their indi-
vidual nuclear transmutation processes (i.e., coupled chains of
nuclides). For any given transmutation group for which a transmu-

tation matrix ÂðtÞ is defined, the dynamic equation (Bell and
Glasstone, 1985)

d
dt

N
!ðtÞ ¼ ÂðtÞN!ðtÞ; N

!ð0Þ ¼ N
!

0 ð1Þ

must be solved to yield the column vector N
!ðtÞ of nuclide concen-

trations (atom densities) at any desired time t > 0. Making the
usual assumption (Bell and Glasstone, 1985; Henry, 1986) that

the transmutation matrix ÂðtÞ is a piecewise constant function of
time, the formal solution of the dynamic equation can be con-
structed at discrete time points as (Bell and Glasstone, 1985)

N
!ðtmþ1Þ ¼ eDtmþ1Âmþ1 N

!ðtmÞ; m ¼ 0;1;2; . . . ð2Þ

with Dtmþ1 � tmþ1 � tm and t0 ¼ 0. This scheme implies a sequential

computation of the inventory vector: once N
!ðtmÞ has been deter-

mined, N
!ðtmþ1Þ can be determined. The subscript mþ 1 indicates

that the transmutation matrix Âmþ1 belongs to time step mþ 1
and that this matrix is time-invariant during the time interval
t 2 ½tm; tmþ1�. This time interval is known as the time integration

domain for the matrix Âmþ1, but we shall also refer to it as a burnup
step. Hereafter, we shall consider the solution to the linear dynamic
equation for a single burnup step only, thus permitting us to drop
the burnup step index. We then write the formal solution as

N
!ðt0 þ DtÞ ¼ eDtÂ N

!ðt0Þ ð3Þ

where t0 now signifies the time at the start of the given burnup step

of size Dt. A numerical representation of the matrix exponential eDtÂ

is required to complete the calculation of the inventory vector at the
end of the burnup step. It is the determination of this matrix
exponential, or of its product with a vector, that is the central theme
in nuclide transmutation calculations.

A variety of methods exist for determining the matrix exponen-
tial, none of which are completely satisfactory in the general sense
(Moler and Van Loan, 2003). Consideration of the matrix properties
can be a useful guide in selecting an appropriate method. In this
regard, the fact that the nuclide transmutation matrix is an essen-
tially nonnegative matrix1 is of great importance since essentially
nonnegative matrices constitute a natural class of matrices in the

analysis of matrix exponentials: a matrix Â is essentially nonnega-

tive if and only if etÂ is nonnegative for all t P 0 (Varga, 1962). Some
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1 A real square matrix is said to be essentially nonnegative if its off-diagonal entries
are nonnegative.
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of the available schemes for the computation of matrix exponentials
may not be appropriate for this class of matrix while others may be
especially tailored for it. For instance, for an essentially nonnegative
matrix with a negative diagonal, the naive application of a truncated
Taylor series approximation,

etÂ �
XK
k¼0

tk

k!
Âk ð4Þ

may result in a numerically unstable, inaccurate, and unreliable
method as a result of catastrophic cancellation in the summation
of terms of alternating sign. On the other hand, numerical methods
that have been specially developed for discrete-time Markov chains
(Abdallah and Marie, 1993; Sidje and Stewart, 1999; Dulat et al.,
2010; Sidje, 2011) may be ideally suited to the nuclide transmuta-
tion problem.2 Two such methods are analysed in this paper. The
first one is the well-known (standard) uniformization method
(Abdallah and Marie, 1993; Sidje and Stewart, 1999). The other is a
more recent development (Shao, 2012; Shao et al., 2014) known as
the ‘‘aggressively truncated Taylor series method”, which is basically
an optimised version of the uniformized power method (Abdallah
and Marie, 1993; Sidje and Stewart, 1999). The common thread
between these methods is the use of the Taylor series method sup-
plemented by the uniformization approach (Sidje and Stewart,
1999) to eliminate catastrophic cancellation. The trademark of these
two methods is simplicity, which greatly facilitates implementation
in a computer code. The application of the uniformization method to
the nuclide transmutation problem has actually been reported previ-
ously (Krüger, 2004; Müller et al., 2006) and we include its discus-
sion in this paper primarily because it forms the basis for the
development of the aggressively truncated Taylor series method.
Another reason is that we want to compare the aggressively trun-
cated Taylor series method, whose application to the nuclide trans-
mutation problem is original, against the uniformization method on
a fair basis with both implemented in a common computer code.3

The objective in this paper is distinctly modest in that neither a
comprehensive review of existing nuclide transmutation methods,
nor a numerical comparison against other well known methods is
attempted. Instead, we focus entirely on a mutual comparison of
our two chosen methods, thereby hoping to stimulate more exten-
sive future research into the practical utility of these methods in
the broader nuclear reactor analysis arena. We do, however,
include a brief overview of some of the better known (existing)
methods in order to gain some perspective.

The numerical analysis presented in this work is restricted to
relatively small nuclide transmutation problems because the
aggressively truncated Taylor series method is expected to be most
suitable to such problems. Since we wish to identify possible appli-
cations where the uniformization method is challenged and where
the aggressively truncated Taylor series method could be a good
alternative, we included in our set of test problems a few very
demanding numerical benchmarks developed by Lago and
Rahnema (2017).

The remainder of this paper is organised as follows. First, a short
overview of the nuclide transmutation methods currently used in
the reactor physics field is given. Next, important properties of
the nuclide transmutation matrix are noted. The uniformization
method and the aggressively truncated Taylor series method are
then developed in turn, with the greater part of the text dedicated
to a discourse on the algorithmic aspects that are of relevance to
the software implementation. This is followed by the numerical

analysis. Finally, we draw conclusions and convey our opinion on
the prospects of these methods.

2. Overview of nuclide transmutation methods

Nuclide transmutation calculations can be divided into three
categories:

1. Reference type calculations involving very large transmutation
matrices for thousands of nuclides with extreme variation in
effective half-lives (i.e., very stiff problems). These calculations
generally simulate reactor fuel depletion histories (power histo-
ries) in a highly simplified way since their main purpose is to
generate detailed radionuclide inventories for post-irradiation
calculations, both of a short-term (using very small burnup
steps) and long-term character (using extremely large burnup
steps).

2. Lattice physics depletion calculations (Stamm’ler and Abbate,
1983) involving large transmutation matrices for several hun-
dred (fewer than a thousand) nuclides with large variation in
effective half-lives (i.e., stiff problems). These calculations
employ simplified (reduced) nuclide chains and rather short
burnup time steps (ranging from 1 day to a few months). The
nuclides included in these calculations are primarily those that
have a significant impact on neutron economy. The purpose of
these calculations is to prepare data for global reactor core
depletion calculations, and sometimes even for reference type
calculations.

3. Global reactor core depletion calculations (Henry, 1986) involv-
ing small transmutation matrices for fewer than a hundred
nuclides with modest to large variation in effective half-lives
(i.e., still stiff problems). The nuclide chains in these calcula-
tions are even further reduced from those used in the lattice
calculations but the burnup time steps are of similar size. These
depletion calculations can be, and often are used to prepare fuel
depletion histories for reference type calculations.

Very sophisticated nuclide transmutation algorithms are needed in
reference type calculations, whereas much simpler methods, such
as those developed in this paper, are used in lattice physics and
core depletion calculations. One of the best known methods used
in reference type calculations is the so-called matrix exponential
method embodied in the ORIGEN code (Gauld et al., 2011). This
method combines the standard Taylor series approximation of
Eq. (4) with a generalised form of the Bateman equations
(Bateman, 1910) for linearised nuclide chains. The catastrophic
cancellation that plagues the standard Taylor series approach is
mitigated by removing the most short-lived nuclide chains from
the transmutation matrix and using the Bateman solution for
them. The Taylor series method is applied to the reduced matrix
only. Because a Horner scheme involving recursive matrix-vector
multiplications is used, the matrix exponential (of the reduced
matrix) is never actually constructed. Not only is this hybrid
scheme complicated, but it also alters the transmutation model
such that significant departure from exact results is possible at
short depletion times during the early transmutation life of many
short-lived nuclides (Thomas et al., 1994).

Recently, another method has gained popularity in this class of
application, namely the Chebyshev Rational Approximation
Method (CRAM) (Pusa, 2011). This method, which exploits the
properties of essentially nonnegative matrices, is based on a
rational function approximation of the exponential on the negative
real axis. This method is practically insensitive to burnup time step
size and the stiffness of the problem (Pusa, 2011; Krüger, 2004).
The CRAM has been shown to be a robust and accurate method,

2 Continuous-time nuclide transmutation chains are actually continuous-time
Markov chains (Halász (2018)).

3 The two methods have been implemented in a nuclide depletion computer code
written in the Fortran 2003 programming language.
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