
Probability distribution for neutron density of two energy group point
kinetics system

Ahmed E. Aboanber ⇑, Abdallah A. Nahla, Noha M. Hassan
Department of Mathematics, Faculty of Science, Tanta University, Tanta 31527, Egypt

a r t i c l e i n f o

Article history:
Received 29 August 2017
Received in revised form 10 April 2018
Accepted 25 April 2018

Keywords:
Probability distribution of neutron flux
Two energy group kinetic model
Multi-group of delayed neutrons
Magnus expansion
Eigenvectors and eigenvalues

a b s t r a c t

The probability distribution of the number of neutrons and delayed neutron precursors in a multiplying
assembly of various types of reactivities is developed for two energy groups. The space independent point
reactor kinetics model for six precursors group of delayed neutrons is considered. The problem is formu-
lated in terms of the probability distribution, generating function which satisfies a partial differential
equation, derived in this paper. The probability distribution of two energy group delayed neutrons and
the density of the precursors are obtained by solving this system of reactor kinetics model by adopting
the mathematical methods. At the point, when the system is formulated in an operator or matrix form,
the Magnus expansion furnishes an elegant setting to build up approximate exponential representations
of the solution of the kinetics system. It provides a power series expansion for the corresponding expo-
nent and is sometimes referred to as time-dependent exponential perturbation theory. Every Magnus
approximate corresponds in perturbation theory to a partial re-summation of infinite terms with the
important additional property of preserving, in any order, certain symmetries of the exact solution.
The first, second and third Magnus expansions are described and used to predict the first moment of fast,
thermal and multi-group of delayed neutrons precursor for the two-energy point kinetics reactor system.
The validity of the presented method is tested with the aid of the eigenvectors and eigenvalues of the
kinetics system in the matrix form by comparing with the conventional methods.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The mathematical systems of reactor kinetics are normally rep-
resented in terms of a collection of individuals governed by the
competition of the two basic random mechanisms of birth and
death. The neutron population in a nuclear reactor is subject to
fluctuations in time and in space due to the competition of diffu-
sion by scattering, births by fission events, and deaths by absorp-
tions. The common textbook introduction to the neutron
transport equation or its successive approximations is based on a
particle balance argument for the ‘‘average number of particles”
within an element of phase space. The result is a linear, determin-
istic equation for the angular flux Wðr;v ; tÞ ¼ vnðr;v; tÞ, e.g.,
(Duderstadt et al., 1976; Hetrick, 1971; Stacey, 2007; Glasstone
et al., 1981; Ray, 2016; Lamarsh and Baratta, 2001). Although the
neutron transport equation does not include any description of

stochasticity, the quantity nðr;v ; tÞ is interpreted as the ’mean’ par-
ticle density.

Stochastic models of nuclear reactors have been employed by
several authors (e.g. (Courant and Wallace, 1947; Feynman,
1946; Feynman et al., 1956; Hoffmann, 1949; Hansen, 1960;
Gillespie, 1992)). The new derivation of the two energy group point
kinetics system presented in this paper allow to have the moments
of the probability distribution, where all important information for
the system’s behavior can be had through this moments. The first
moment relates to the mean of the probability distribution, the
second to the variance, the third to skewness and the fourth to kur-
tosis. The predicted values of different type of neutrons play a
major rule for computing the power reactor and in a study the
safety of nuclear reactors. For this aim, we derive a system of stiff
two-energy-group point kinetics differential equations from the
perspective of probability theory. In most cases, attention was con-
fined to the first two moments of the probability distribution,
where the behavior of the first moment was given by the usual
reactor kinetic equations and the behavior of the second moment
was determined from the stochastic model. More insight is gained
with the statistical mechanics approach in which the neutron
transport equation is seen as a linear form of Boltzmann’s equation
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that describes the approach towards equilibrium of a weakly dense
gas. The qualitative description of this picture is that of particles
moving freely along deterministic trajectories and undergoing
punctual interactions; the random behavior is thus introduced
through the mechanism of collisions. In Boltzmann’s picture we
are able to formally identify the average number of particles with
the one particle distribution function, that is, with the average
number of particles at a location in phase space, regardless of the
distribution of particles elsewhere (Sanchez, 1997). It is clear that,
in order to have good statistics, one has to have lots of particles and
lots of target nuclei. If the number of particles is small, then one
suspects that a description of only the average value will not be
sufficient. As the number of particles increases, we expect the
statistics to improve and get into the onset of determinism.

Deriving the stochastic equations for the probability distribu-
tion as a function of time in a space-independent (point) multiply-
ing assembly with time-independent, velocity-dependent cross
sections is illustrated by Sanchez (1997). The probability distribu-
tion of the number of neutrons and delayed neutron precursors in a
multiplying assembly is considered by Bell (1963). Particular
emphasis is placed on the probability distribution for a system
which is brought, to a supercritical state in the presence of a neu-
tron source which is so weak that deviations from the average pop-
ulation may be large. A space independent model is used with one
group of neutrons. The analysis has been carried on in the presence
of sources, (Hansen, 1960), while accounting for precursors, (Bell,
1963). Numerical techniques based on the characteristic methods
have also been applied to the evaluation of time-dependent prob-
abilities characterizing a fission chain, (Bell et al., 1963), in the
presence of precursors. The general analysis has been extended
to the study of finite systems (Bell, 1965; Degweker, 1994).

In the present paper, a two-group point reactor kinetics model
of fast, thermal and six groups precursors of delayed neutrons is
presented. The probability balance equation with a general source
term is written in terms of probability generating function. The
algorithm is derived by means of analytical and statistical mathe-
matical tools. The Magnus expansion, (Magnus, 1954; Blanes et al.,
2009), is described and used to predict the first moment of fast,
thermal and precursors concentration of group i for the multi-
energy point kinetics reactor system. As a part of the bibliography
history in the field of two energy groups for reactor kinetics, Blan-
chon simulate the neutron kinetics with two energy groups and six
precursor groups by numerical method (Blanchon et al., 1988). The
iterative algorithm and the stability has been evaluated for propose
of the solution of a large linear system. The diffusion equation of
neutrons in slab geometry is solved by Lemos et al. (2008) for a
model with two energy groups by the technique of Laplace trans-
form. PWS code has been developed to include a numerical solu-
tion for the time-dependent neutron diffusion equations for the
nuclear reactor analysis. The new technique employs a new param-
eter a which can reduce the rapid increase in magnitude of the
power series coefficients. The validity of the algorithm was tested
with three kinds of well-known two-energy group benchmark
problems Abonaber and Hamada (2009). The problem in Cartesian
geometry was solved successfully by Ceolin et al. (2011) and was
extended for different geometry. The analytical solution for the
two-group kinetics neutron diffusion equations is introduced by
Fernandes et al. (2011) in cylindrical geometry by the Hankel
transform. Fernandes et al. (2013) discussed the kinetics neutron
diffusion equation in homogeneous cylinder geometry. They con-
struct solutions unaffected by a numerical artifact, known as the
stiffness of the equation system, for two energy groups, one and
six precursor concentrations, respectively (Fernandes et al.,
2013). A novel analytical formulation is constructed and converged
to high accuracy from the merger of the piecewise constant func-
tions over a partition in time into the fundamental matrix for the

two-energy group of the point kinetics equations by Aboanber
et al. (2014). The resulting system of stiff linear and/or nonlinear
differential equations for an arbitrary number of delayed neutrons
is solved exactly over each time step.

The paper is organized as follows: the fundamental partial dif-
ferential equation for the probability generating function, which
representing the probability density of the neutron flux for fast
and thermal energy groups and the contributions from the precur-
sor, is derived for the two energy group model in Section 2. This
basic system was converted to the matrix differential equation,
which is solved based on the Magnus expansion for step, ramp
and sinusoidal reactivity variations in Sections 3.

2. Basic mathematical model

The neutron in the multiplying system will disappear from the
system either by leakage or by suffering a non-elastic collision
(such as fission, radiative absorption, etc.). The derivation of an
analytical formulation of the system of differential equations rep-
resenting the probability density of the neutron flux for fast and
thermal energy groups and the contributions from the precursors
is the main focus of this section. Let us consider the following
kinetic parameters, v1 and v2 are the fast and thermal neutrons
speed, D1 and D2 are the fast and thermal diffusion coefficients,
Ra1 and Ra2 are the fast and thermal absorption cross sections,
Rf 1 and Rf 2 are the fast and thermal fission cross sections, Rs12 is
the scattering cross section from fast to thermal neutron, Rc1 and
Rc2 are the fast and thermal capture cross section, Rl1 and Rl2 are
the fast and thermal leakage cross sections, ki is the decay constant
of i�group of delayed neutrons and bi is the fraction of i�group
delayed neutrons.

In the multiplying system, let us define l1 and l2 as the fast and
thermal neutrons lifetime. Then the probability of fast and thermal
neutrons disappearing (either by leakage or by fission and radiative
absorbtion) in time interval dt are given by

dt
l1
¼ v1Rs12dt þ v1Ra1dt þ v1Rl1dt; Rl1 ¼ D1B

2

dt
l2
¼ v2Ra2dt þ v2Rl2dt; Rl2 ¼ D2B

2

9=
; ð1Þ

where B2 is the material buckling in time interval dt, v1Rl1dt and
v2Rl2dt are the probability of fast and thermal neutrons disappear-
ing by leakage, v1Ra1dt and v2Ra2dt are the probability of fast and
thermal neutrons disappearing by absorption and v1Rs12dt is the
probability of fast neutron disappearing by scattering from fast to
thermal. Precursors of type i are characterized by lifetime 1

ki
such

that a precursor has probability kidt of producing a neutron in time
interval dt. The neutron source is characterized by SkðtÞ;
k ¼ 1;2;3; � � � ;K , where SkðtÞdt is the probability that the neutron
source emitted k neutrons during time interval dt.

Let us consider the probability that at time t there are exactly n1

fast neutrons, n2 thermal neutrons and mi precursors of type i in
the system ði ¼ 1;2; � � � ; IÞ
Pðn1;n2;m1; � � � ;mI; tÞ ¼ Pðn1;n2;m; tÞ
Here m is a vector with components m1;m2; � � � ;mI . By enumerating
all the possible events that can happen in the interval dt such as:

1� n1dt
l1

� n2dt
l2

�PI
i¼1kimidt � SkðtÞdt

h i
Pðn1; n2;m; tÞ is the proba-

bility that there is no change in the number of fast, thermal neu-
trons and precursors of type i in time dt,
v1Rs12 ðn1 þ 1ÞdtPðn1 þ 1;n2 � 1;m; tÞ is the probability of missing
fast neutron due to scattering from fast to thermal, v1ðRc1 þ Rl1 Þ
ðn1þ1ÞdtPðn1þ1;n2;m;tÞ and v2ðRc2 þRl2 Þðn2 þ1ÞdtPðn1;n2 þ1;
m; tÞ are the probability that fast and thermal neutrons disappear
from the system either by capture or by leakage respectively,
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