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a b s t r a c t

Bayesian inference provides a coherent probabilistic approach for combining information from measure-
ments of in-core neutron detectors and numerical neutronics simulation results, and thus is an appropri-
ate framework for reactor core power mapping which has been implemented in this paper.
Measurements from DayaBay Unit 1 PWR are used to verify the accuracy of the Bayesian inference
method, and comparisons are made among the Bayesian inference method, the Kalman filter method
and the very-often-used coupling coefficients method. The root mean square errors (RMSE), the maxi-
mum relative errors (MRE), and the power peak reconstruction error (PPRE) of the Bayesian inference
method are less than 0.31%, 1.64% and 0.07% for the entire operating cycle separately. The reconstructed
assembly power distribution results and the calculation speed show that the Bayesian inference method
is a promising candidate for on-line core power distribution monitoring system.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Reactor core power mapping, i.e. power distribution monitoring
is vital to core surveillance of operating power reactors, and
detailed three dimensional power distribution serve as one of the
basic operation parameters which can directly determine many
other important parameters such as power peaking factor,
enthalpy rising factor and quadrant tilt ratio to evaluate the safety
margins and optimize the economy of nuclear reactors. Most com-
mercial power reactors in operation are equipped with movable or
fixed in-core neutron detectors to obtain useful power distribution
information, and sustained efforts have been devoting to develop
on-line monitoring systems, such as BEACON (Boyd and Miller,
1996), using fixed in-core detectors for core surveillance of the
third-generation nuclear power plants. The signals of detector at
certain location reflect the actual reactor flux or power can be
applied to improve the results of the only theoretical diffusion
calculations.

The path to develop fast and accurate power mapping method
has never been stopped due to the increasing needs of ensuring
safety and optimizing economy of nuclear power plants. A process
of least-squares fitting of the measured vanadium detector signals
to a linear expansion of pre-calculated flux modes is implemented
in the CANDU on-line flux mapping system (Tang et al., 1978) to
map out 3D flux distribution. Coupling coefficients method
(Karlson, 1995; Jang, 2004) determines the powers of the uninstru-

mented assemblies through the solving of a linear system contain-
ing coupling coefficients, and several improved methods such as
Lagrange multiplier method (Webb and Brittingham, 2000) have
been developed. Lee and Kim (Lee and Kim, 2003) proposed a
least-squares method by combining the coarse mesh finite differ-
ence (CMFD) form of the fixed-source diffusion equation and the
detector response equation to form an over-determined linear
equation. Peng (Peng, 2014) utilized the ordinary kriging method
to perform power mapping and optimize the locations of fixed
detectors. Li (Li, 2014) proposed an on-line monitoring method
based on the nodal method and the harmonics synthesis method.
Data assimilation techniques, such as three dimensional varia-
tional optimization method (3D-VAR) (Massart and Buis, 2007)
and its variant Kalman filter (Bertrand, 2012), have also been
applied in neutronic field interpolation to estimate power distribu-
tion in some optimal way using measurements and computer
simulations.

Bayesian inference (Bishop, et al., 2006) is defined as the pro-
cess of fitting a probability model to a set of data and summarizing
the result by a probability distribution on the parameters of the
model and on unobserved quantities such as predictions for new
observations. In nuclear engineering field, Bayesian inference has
been applied in inverse uncertainty quantification to get the prob-
ability density function of model parameters that are consistent
with the experimental data. Wu (Wu, 2018) performed the inverse
uncertainty quantification of the model parameters of BISON
fission gas release (FGR) model based on Risø-AN3 benchmark
FGR time series data. Li (Li, 2017) assessed the uncertainty for
model parameters of RELAP5 code related to reflood phenomena
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with data of FEBA (Flooding Experiments with Blocked Arrays)
facility. Castro (Castro, 2016) proposed a Bayesian inference model
MOCABA to utilize measurement information obtained in the pre-
vious cycle to reduce the prediction uncertainties of the boron let-
down curve and the fuel assembly-wise power distribution of the
current cycle. In this paper, we introduce Bayesian inference into
reactor core power distribution mapping to reconstruct the whole
core power distribution based on neutronics simulation and mea-
surements of in-core neutron detectors, and compare its results
with those of the Kalman filtering method which was proposed
in reference (Bertrand, 2012).

2. Methodology

2.1. Bayesian inference

Let us consider an arbitrary vector function x, and x is a random
vector defined by a prior probability density function (pdf) pðxÞ
which reflects the uncertainty of x without any knowledge of mea-
surements and is generally assumed to be a multivariate normal
distribution characterized by a mean vector x0 and a covariance
matrix R0.

According to Bayes’ theorem, the updated information about x
is characterized by the posterior pdf which is defined as:

pðxjvÞ ¼ pðvjxÞpðxÞR
pðvjxÞpðxÞdx / pðvjxÞpðxÞ ð1Þ

where v represents the vector defining the measurements, pðvjxÞ is
the likelihood function which can also be represented by a normal
distribution, and then a multivariate normal posterior pdf pðxjvÞ
characterized by mean vector x� and a covariance matrix R� can
be generated.

In this work, we applied the description of Bayesian inference
adopted by Castro and partition the model parameters of the prior
distribution, the likelihood function and the posterior distribution
into an application case A and a benchmark case B in order to dis-
tinguish them:

x0 ¼ ðx0A; x0BÞ; R0 ¼ R0A R0AB

RT
0AB R0B

� �
;

v ¼ ðvA;vBÞ; RV ¼ RVA 0
0T RVB

� �
;

U ¼ UA 0
0T UB

� �
; x� ¼ ðx�

A; x
�
BÞ;

R� ¼ R�
A R�

AB

R�T
AB R�

B

 !
:

ð2Þ

where RV represents the measurement covariance and U represents
the measurement operator which describes the mapping relation-
ship between x and v.

In order to obtain x� and R�, the posterior pdf pðxjvÞ has to be
maximized with respect to x. Under the assumption that we only
have direct measurements of xB, then the following expressions
for the posterior model parameters can be obtained:

x�
A ¼ x0A þ R0ABðR0B þ RVBÞ�1ðvB � x0BÞ ð3Þ

x�
B ¼ x0B þ R0BðR0B þ RVBÞ�1ðvB � x0BÞ ð4Þ

R�
A ¼ R0A � R0ABðR0B þ RVBÞ�1RT

0AB ð5Þ

R�
B ¼ R0B � R0BðR0B þ RVBÞ�1R0B ð6Þ

R�
AB ¼ R0AB � R0ABðR0B þ RVBÞ�1R0B ð7Þ

We can see from Eqs. (3)–(5) that the understanding of xA can
be updated with the measurement vB and its corresponding covari-
ance RVB.

2.2. Application in power distribution mapping

Bayesian inference is applied only to the 2-dimensional radial
power distribution mapping in this study, and the axial power dis-
tribution can be reconstructed by the cubic spline synthesis
method (Wang, 1991) in the real application of core power distri-
bution monitoring system. In the following contents, we will see
that Bayesian inference isn’t used directly in nodal power estima-
tion, but in calibration factor estimation.

In the real application of core monitoring system, the detector
current signals are transformed into measured nodal powers of
instrumented assemblies by using the power-to-signal ratio which
can be determined from fine-mesh, multigroup diffusion theory
(Webb and Brittingham, 2000). After obtaining the measured nodal
powers, the model calibration factor of instrumented assembly is
defined by

Di ¼ Pmea
i =Pcal

i ð8Þ
where i labels the location of the instrumented assembly, Pmea

i is the

corresponding measured nodal power, and Pcal
i is the corresponding

predicted nodal power calculated by neutronics code.
Bayesian inference is then applied to get the calibration factors

of the un-instrumented assemblies given those factors of instru-
mented assemblies by the utilization of Eq. (3) which can be
rewritten into:

D�
j ¼ D0j þ R0jiðR0i þ RViÞ�1ðDi � D0iÞ ð9Þ

where j labels the location of the un-instrumented assembly, D�
j

represents the calibration factors of the un-instrumented assem-
blies, D0i=j represent the mean values of the prior distribution of cal-
ibration factors for all assemblies, and the measurement vector is
Di. Finally, the reconstructed nodal power of un-instrumented
assembly can be obtained:

Precon
j ¼ D�

j P
cal
j ð10Þ

where Precon
j is the reconstructed power distribution of the un-

instrumented assemblies, and Pcal
j is the predicted nodal power cal-

culated by neutronics code.
In the application of Bayesian inference, the mean values of cal-

ibration factors of the prior distribution D0i=j are set as one:

D0 ¼ ðD0j;D0iÞ ¼ I ð11Þ
In this study, the second order auto-regressive function

(Massart and Buis, 2007) is used to specify the covariance matrices
R0ji, R0j and R0i to reflect prior information. In such a function, the
amount of covariance depends from the Euclidean distance
between spatial points. The correlation length L has different val-
ues, which means we are dealing with a global pseudo Euclidean
distance. The element of all covariance matrices that shows the
correlations between calibration factors of two assemblies can be
expressed as:

R0mn ¼ r2 1þ rmn

L

� �
exp � rmn

L

� �
ð12Þ

where rmn represents the spatial distance between two assemblies
labeled by m and n, r represents the standard deviation. There is
an assumption that all the random variables have the same value
of r.

The measurement covariance RVi is approximated by a diagonal
matrix and this means that no direct correlation exists between
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