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A genetic algorithm based on novel genetic operators is implemented for the problem of nuclear fuel
loading pattern optimization. This is achieved using rank selection or tournament selection and novel
crossover operator and fitness function constructions, e.g., improved crossover and mutation operators
by considering the chromosomes as permutations (which is a specific feature of the loading pattern prob-
lem) and the “stage fitness function” that separates the different objectives of the optimization. Another
novel feature of the algorithm is the consideration of the geometric nature of the problem and the desired
loading pattern solutions. A new geometric crossover is developed to utilize this geometric knowledge
and its implementation exhibits good results. A comprehensive study is performed on the effect of differ-
ent adaptive mutation strategies on the performances of the algorithm. The new algorithm is imple-
mented and applied to two benchmark problems and used to study the effect of boundary conditions
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on the symmetry of the obtained best solutions.
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1. Introduction

The majority of nuclear reactors are operated in cycles with
periodic complicated and expensive refueling outages. The fuel in
the reactor core is not homogeneously burned and usually a third
of the (most depleted) fuel assemblies (FAs) are replaced during
refueling. The loaded fresh FAs, together with the remaining
depleted FAs, are rearranged to form a new core configuration
(loading pattern, or LP). The new core configuration should maxi-
mize the energy production until the subsequent refuelling outage
(long cycle) while still satisfying all safety limitations and opera-
tional constraints. For example, the core excess reactivity should
be maximized to ensure a long cycle and high fuel burnup, while
maintaining the ability to control and shutdown the reactor within
the required safety margins (Turinsky, 2005; Turinsky et al., 2005;
Jayalal et al., 2014; Israeli and Gilad, 2017a).

The LP optimization problem is of great importance for electric-
ity utilities as well as for research reactors operating with limited
nuclear fuel repository. This study is of true inter-disciplinary nat-
ure in the sense that a combination of expertise in both evolution-
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ary algorithms and nuclear reactor physics is required. This field of
research is active and relevant, and has been for many years, but
the successful application of modern evolutionary algorithms for
solving such problems is only just beginning (Turinsky, 2005;
Jayalal et al., 2014; Israeli and Gilad, 2017a).

A well known method used for addressing the optimization
problem of in-core fuel management is the so called evolutionary
algorithm, specifically the genetic algorithm (Goldberg, 1989;
Parks, 1996). However, many studies dealing with this problem
thus far use fairly basic and traditional implementations of the
genetic algorithm and disregard important and relevant problem
related information, such as the geometrical structure of the core
e.g., (DeChaine and Feltus, 1995; Chapot et al., 1999; Toshinsky
et al, 1999; Hongchun, 2001; Gang et al, 2002; Ortiz and
Requena, 2004; Do and Nguyen, 2007; Alim et al, 2008;
Khoshahval et al., 2011; Norouzi et al., 2013; Zameer et al., 2014)
(see also Jayalal et al.,, 2014 and Refs. therein). Other examples
include the use of fitness proportionate roulette wheel instead of
tournaments and linear ranking for the selection and using binary
chromosomes.

Almost all studies in this field impose symmetry restrictions on
the problem. The main reason for using symmetry constrains is an
operational one; the different primary coolant loops of the nuclear
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power plant must maintain similar thermal-hydraulic conditions
(e.g., flow rate, temperature, pressure) during nominal operation,
imposing symmetry on the reactor core power production
distribution.

On the other hand, research reactors (RRs) operating at
low power, whether cooled by one or more loops, are free of this
operational constraint of symmetry. The same is true for Integral
Reactors (IRs) in general, for Small Modular Reactors (SMRs) in par-
ticular, and especially for reactor designs characterized by a single
coolant loop (IAEA, 2014; Aydogan, 2016). Indeed, other opera-
tional and safety requirements, e.g., low power peaking factor
(PPF) or excess reactivity control, bare significant constrains on
the core loading pattern, but they do not necessarily impose
symmetry.

Obviously, there exist non-symmetric LPs that satisfy high ini-
tial excess reactivity while maintaining low enough PPF that
enable safe reactivity control. Actually, most LPs that use burnt
fuel from previous irradiation cycles, in both RRs and NPPs, are
always slightly non-symmetric, even for equilibrium cores.
Imposing symmetry on the problem, e.g.,, by considering 1/4,
1/6, or 1/8 core LPs, eliminates a priori any (even slightly) non-
symmetric LPs which potentially perform better than symmetric
LPs.

In this work, a genetic algorithm is developed and imple-
mented by using up-to-date selection and crossover operators
and novel fitness function (FF) constructions, e.g., rank selection
or tournament selection instead of the traditional roulette wheel
(RW) selection operator; improved crossover and mutation oper-
ators that consider the chromosomes as permutations (which is a
specific feature of the LP problem); highly adaptive mutation
strategies based on the instantaneous genetic variance of the pop-
ulation; and the “stage fitness function” that separates the differ-
ent objectives of the optimization (Israeli, 2016; Israeli and Gilad,
2017a,b).

The new algorithm is first applied to simple benchmark prob-
lems for qualification and the study of the algorithm’s components
separately, including the effect of boundary conditions on the sym-
metry of the obtained best solutions for that simple benchmark.
Then the algorithm is applied to a more realistic problem of load-
ing pattern optimization. The rest of the article is organized as fol-
lows: the genetic algorithm is described in Section 2, the nuclear
problem and the core simulator are described in Section 3, the
results for the simple benchmarks and for the realistic problem
are given in Sections 4 and 5, and the conclusions are discussed
in Section 6.

2. Algorithm

The population for the evolutionary process consists of a por-
tion of the search space. That is, the individuals in the population
are members of the search space of the optimization problem at
hand. A solution in the evolutionary process is an LP of the core,
i.e.,, a spatial arrangement of the FAs in the core. Some solutions
are better than others for the purposes of optimization. A good
solution in the evolutionary process is characterized by a high FF
value. In this study a restriction is imposed on the allowed solution
LPs, i.e., they are required to maintain the original fuel bank in the
initially given LP.

The evolutionary algorithm (EA) developed in this study is
based on a standard genetic algorithm (GA) with required modifi-
cations. The essentials of the basic genetic algorithm are summa-
rized in Algorithm 1 (Israeli, 2016; Israeli and Gilad, 2017a,b).

Algorithm 1 basic genetic algorithm (Israeli and Gilad, 2017a)

1: procedure GA

2: Generation zero: g =0

3: Create an initial random population of size P

4: Calculate the genetic variance of the population

5: Calculate the fitness F; for every individual,i=1...P

6: while (genetic variance > threshold) AND (g < maxG) do

7: Store the best individual for later reinsertion (Elitism)

8: Select £ pairs of individuals for crossover, according to
their fitness

9: Crossover chosen pairs to generate P offsprings

10: Randomly mutate a fraction u of the population

11: Replace random individual with best one from
previous generation (Elitism)

12: g=g+1

13: Calculate the genetic variance of the new population

14: Calculate the fitness F; for every individual,i=1...P

15: end while
16: end procedure

An LP of a nuclear reactor core is simply an array of cells that
contain materials of different types, e.g., fuel, absorber, reflector.
It is a two dimensional matrix as shown in Fig. 4. It is represented
by a core vector whose entries represent the different locations of
the FAs in the core. The core vector entries are integers represent-
ing the corresponding fuel types (Israeli and Gilad, 2017a).

2.1. Chromosome representation

The chromosome is a vector of the core’s length and is logically
divided into N segments, where N is the number of fuel types. Each
segment is as long as the number of FAs of that type. The chromo-
some is a permutation of the core vector entries and the location
of a core index in the chromosome determines the fuel type it
holds: The core indices in the first part of the chromosome are of
the first fuel type, the ones in the second part contain fuel number
two, and so on and so forth (Israeli and Gilad, 2017a), as demon-
strated in Fig. 1. Each entry in the chromosome vector is called a
gene. This chromosome structure is chosen in order to preserve
the predetermined quantities of the different materials and ele-
ments of the core (Israeli and Gilad, 2017a). Moreover, this repre-
sentation gives simple and intuitive physical meaning to the
genetic variance of the population, i.e., low genetic variance indi-
cates that many chromosomes are similar in the sense that they
position the same FAs in the same locations in the core.

In this representation the same LP can be represented by differ-
ent chromosomes (any permutation of the genes within a single
fuel type segment codes for the same LP). The genes need not be
sorted in each segment. Although duplicate chromosomes of this
kind artificially increase the genetic variability of the population,
they bear no negative impact on the final results. In order to
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Fig. 1. A schematic description of the chromosome structure. The number of entries
in the chromosome vector equals the number of FAs in the core. It is logically
divided into N segments, where N is the number of fuel types. This structure
preserves the predetermined quantities of each FA type.
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