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a b s t r a c t

A burnup equation can be solved with matrix exponential method and its solution can be written as
nðtÞ ¼ eAtnð0Þ. In burnup calculation, general Krylov Subspace Method can solute a matrix–vector effi-
ciently in a subspace but fails to keep a high precision. To solve this problem, a new kind of Krylov
Subspace Method, Generalized Minimal Residual Method (GMRES) is implemented, based on a rational
approximation method. It shows its great advantage in computation speed, which is more than four times
faster than the same kind of rational approximation solved in a whole space while its accuracy is also
guaranteed. Some optimizations, such as shift-Invariant technique, precondition technique and restart
technique, are also implemented on burnup calculation.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Burnup calculation is to simulate changes in the material com-
position of nuclear fuels, which is very important for the reactors
operating, cooling and radio protection. Accuracy and speed of cal-
culation are the most important issues.

At present, there are two main ways to solve the burnup equa-
tion. One is to solve burnup chains, such as Transmutation Trajec-
tory Analysis (TTA) (Cetnar, 2006), while the other is to use a
matrix exponential approximation. In recent years, the matrix
exponential method has been widely studied and it seems to be
more attractive in both accuracy and speed (Moler et al., 2003),
which may help a lot in the burnup calculation. The burnup equa-
tion, which represents the decay and transmutation of more than
1000 nuclides, can be written in a matrix form as:

dnðtÞ
dt

¼ AnðtÞ; ð1Þ

In Eq. (1), n ¼ ½n1; . . . ;ni; . . . ;nn�T and niare the atomic density of
the nuclide i. The n � n matrix A is called burnup matrix whose
diagonal elements represent the removal rate of each nuclides
and off-diagonal elements represent production rates from other
nuclides (Isotalo and Pusa, 2016):

Ai;i ¼ �ki � /
X
r

ri;r; ð2Þ

and

Ai;j–i ¼ bi;jkj þ
X
r

yi;j;rrj;r/; ð3Þ

where ki = decay constant of nuclide i; U = neutron flux; bi;j =
branching ratio from nuclide j to nuclide i; ri;r = cross section of
reaction r of nuclide i; yi;r = yield of nuclides when nuclides j under-
goes reaction r;

In a small time-interval, the burnup matrix A is calculated as a
constant. Then Eq. (1) is a time-domain ordinary differential equa-
tion and its solution is:

nðtÞ ¼ eAtnð0Þ; ð4Þ
where nðtÞ is the nuclide concentration vector.

In this case, the burnup calculation can be easily solved if
proper measures are taken to deal with the matrix exponential
eAt . However, the n � n burnup matrix A is not only large in size
but also stiff to calculate. Because of the existence of the short-
lived nuclides, whose rates of change outclass other nuclides, the
norm and the stiffness of the matrix becomes very huge. In decay
calculation, the norm of the matrix is up to 1015. Besides, multiply-
ing the time step t, which may be up to 105, will cause even more
computational problems.

There are many way to solve matrix exponential, including
truncated Taylor series expansion, Pade rational approximation
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method (PRAM), Chebyshev rational approximation method
(CRAM) (Pusa and Leppanen, 2010) and Krylov Subspace Method
(KSM) (Yamamoto et al., 2007).

Since Pade rational approximation is expanded near the origin,
it can only deal with a matrix of small norm excluding the burnup
matrix. Using scaling and squaring technique (Al-Mohy and
Higham, 2009; Higham, 2005) may help a lot. Truncated Taylor
serious expansion has similar problems and it also has a large
round-off error.

Chebyshev rational approximation method, which expands ex

near the negative real axis, seems to work well since the eigenval-
ues of the burnup matrix converge to the negative real axis (Pusa
and Leppanen, 2010). All the methods mentioned above share a
flaw that they require a large computational cost and thus take a
long time.

Krylov Subspace Method (KSM) is implemented widely on a
system of linear equations. It can deal with a large matrix very fast
because it projects a large matrix into a small one with the help of
Arnoldi algorithm (Hochbruck and Lubich, 1997). An advantage of
KSM to solve matrix exponential is that only matrix-vector multi-
plications are carried out and therefore lower computation cost is
required. A lot of meliorations have been studying, such as shift
and invert technique (Botchev, 2016) and precondition techniques
(Yeung et al., 2017). However, the accuracy of KSM depends on the
spectral properties of the matrix but unfortunately the burnup
matrix is too stiff to projected accurately with the normal Arnoldi
algorithm.

To solve this computational problem, this paper mainly intro-
duced a new Krylov Subspace Method based on rational approxi-
mation, using a specially modified Arnoldi algorithm:
Generalized Minimal Residual Method (GMRES). The remainder
of this paper is organized as follows: In Section 2, rational approx-
imation is briefly introduced. In Section 3, the general KSM is
reviewed. Section 4 mainly describes a New Krylov Subspace
Method and its rough errors analysis is also discussed. Imple-
mented on the burnup calculation, the numerical results and dis-
cussions are presented in Section 5 and conclusion is
summarized in Section 6.

2. Rational approximation method

With rational approximation, ex can be approximated in a cer-
tain interval and written in a form as:

RV ¼ UV=WV ; ð5Þ

where V means the order of the numerator and denominator;
This can also be written in partial fraction expansion as:

RVðkÞ ¼ s0 þ
XV
j¼1

sj
ðk� njÞ

; ð6Þ

where n1; . . . ; nv are the poles and s1; . . . ; sj are the corresponding
residues. s0 is the limit of the function RV at infinity. Applied to
the burnup calculation, the solution can be written as:

nðtÞ ¼ RVðkÞn0 ¼ s0n0 þ
Xm
j¼1

sjðA� njIÞ�1n0; ð7Þ

In Eq. (7), with no need for matrix inversion, only m linear sys-
tems of equation ðA� njIÞx ¼ b need to be solved. In general,
Gauss-Seidel iterative method is a general way to get the solution
when n is large enough and transforming into a sparse form will
even make it more efficiently.

3. General Krylov Subspace Method

Krylov Subspace Method (KSM) is a very efficient way to solve
large and stiff ordinary differential equations (ODEs). KSM tries
to project a matrix of large size onto a subspace and the matrix
becomes a small one, which is easier for calculation. And the solu-
tion is searched in a subspace instead of the whole space. The sub-
space can be written as:

KfA; xg ¼ spanfv;Av; . . . ;Am�1vg; ð8Þ
In KSM, matrix exponential is not directly calculated but it

relies on a matrix-vector value. With Arnoldi procedure [shown
in Algorithm 1], which is similar to Gram-Schmidt procedure, the
orthogonal basis Vm ¼ fv1; . . . ;vmg is built. This means that the lin-
ear combination of v1

�!
; v2
�!

; v3
�!

; . . . ; v jþ1
��! can fully express the vec-

tor Av j
! in subspace KfA; xg.

Algorithm 1 Arnoldi procedure

Input: a n � n burnup matrix tA, origin composition n0, Krylov
subspace dimension mOutput: a n � m matrix Vm

b ¼ kn0k2;
v1
�! ¼ n0

�!
=b;

For j = 1 to m
~p ¼ tAv j

!
;

For i = i to j
hij ¼ v i

!T~p;
~p ¼~p� hijv i

!;
End
hij ¼ k~pk2;
v jþ1
��! ¼~p=hjþ1;j;

End

With Algorithm 1, a n � m matrix Vm is calculated and it satisfies
the following equation (Yamamoto et al., 2007):

AVm ¼ VmHm þ vmþ1hmþ1;meTm; ð9Þ

where Hm is an m � m upper-Hessenberg matrix;
em
�! ¼ ½0; 0; . . . ;0;1�T 2 Rm. By multiplying VT

m at the both sides of
the Eq. (9), the equation becomes:

Hm ¼ VT
mAVm; ð10Þ

In Eq. (4), we notes that: n0 ¼ b v1
�! ¼ bVme1

! and t is a given con-
stant. Therefore :

nt ¼ expðAtÞ � n0

¼ ðVmV
T
mÞ � expðAtÞ � ðVmV

T
mÞ � n0

¼ Vm � expðVT
mAtVmÞ � VT

m � n0

¼ bVm � expðHmtÞ � e1!

¼ bVm � RVðHmtÞ � e1!

ð11Þ

In this case, a matrix exponential of m � m instead of n � n
needs to be calculated, which will greatly improve its computa-
tional efficiency since m�n. KSM is not used to solve matrix expo-
nential directly and it needs to couple with a rational
approximation, such as PRAM and CRAM, which means to solve
RVðHmtÞ with a rational approximation. However, this kind of
approximation has serious computational problems due to the
stiffness of the burnup matrix. The large error consists of two parts
(Lopez and Simoncini, 2006). The first one comes from using
rational approximation to approximate Hmt and the other comes
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