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a b s t r a c t

This paper extends the linear multi-state consecutively-connected system (LMCCS) to the case of LMCCS-
MN, where MN denotes the dual constraints of m consecutive gaps and n total gaps. All the nodes
are distributed along a line and form a sequence. The distances between the adjacent nodes are usually
non-uniform. The nodes except the last one can contain statistically independent multi-state connection
elements (MCEs). Each MCE can provide a connection between the node at which it is located and the
next nodes along the sequence. The LMCCS-MN fails if it meets either of the two constraints. The uni-
versal generating function technique is adopted to evaluate the system reliability. The optimal allocations
of LMCCS-MN with two different types of failures are solved by genetic algorithm. Finally, two examples
are given for the demonstration of the proposed model.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In modern satellite communications, the purpose is to send
information from one point on earth to another through the
satellites in space. The information transmission can be simplified
to three procedures. First, a radio in one place on earth emits
signals up into space. Then one satellite gathers the signals and re-
transmits them to other satellites along the communication link.
Finally, a remote satellite gets the signals and sends them back
down to another spot on earth. The whole satellite communica-
tions can be modeled as linear multi-state consecutively-con-
nected systems (LMCCSs). The modern satellite communication
plays an increasingly important role in the world economy. Thus,
researches on the reliability analysis and optimal allocation for the
LMCCS would be meaningful and challenging. Generally, the
LMCCS can be used to model many systems, such as the fluid
transportation systems, wireless communication systems, sensor

systems and logistics systems. The Nþ1 orderly connected nodes
are evenly distributed along a line and form a sequence, which
forms an LMCCS [1]. The distance between two adjacent nodes is
defined as a basic length unit [2]. All the nodes can contain sta-
tistically independent multi-state connection elements (MCEs)
except the last one. Each MCE j can provide a connection between
the node at which it is located and the next nodes Xj along the
sequence. The Xj is a positive random variable (r:v:) and its prob-
ability mass function (PMF) is usually given. Any MCE failure may
cause a disconnection of the sequence. In other words, the system
fails, if the disconnection of any node exists in the sequence.

The LMCCS model was first proposed in Ref. [1]. Algorithms for
its reliability evaluation were studied in Refs. [3,4]. The LMCCS
model has a source node and a sink node. It can be generalized to
the multistate-node acyclic network model which has a source
node and a number of sink nodes [5]. The reliability evaluation of
LMCCS with fixed retransmission delays was studied in [6]. The
expenses of bypass transportation systems (BTS) in LMCCS are
introduced in Ref. [7], where the expenses depend on the number
of the gaps and the length of the gaps. The reliability analysis for
the BTS (such as oil pipeline transportation system and railway
network system) can be referred in Refs. [8–13].

The optimal allocation problem of multi-state elements in
LMCCS is introduced by Malinowski and Preuss in Ref. [14]. The
optimal allocation elements in LMCCS with the common cause
failures are studied in Ref. [15]. Then, a special case of LMCCS is
proposed by Levitin [16], in which several multi-state elements
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can be allocated in the same node while some nodes can remain
empty. When several elements are allocated in a node, they can be
destroyed by common cause failures with the node suffering
attack. The optimal maintenance and allocation of elements in
LMCCS were solved by Peng et al. in Ref. [17], which is constrained
with the system availability requirement. Then, the LMCCS model
is extended to the phased-mission linear consecutively-connected
systems (PM-LCCS) in Ref. [18]. In each phase, the PM-LCCS can be
reduced to an LMCCS model and the nodes are in equidistant
locations. The reliability analysis for the phased-mission system is
studied in Refs. [19–21]. The PM-LCCS model with common cause
failures is studied in Ref. [22].

The LMCCS model was further extended to m consecutive gaps
linear multi-state consecutively-connected system (mGCCS) [23].
A gap exists in the sequence if a node cannot be connected with
any previous node. The m consecutive gaps in the sequence mean
that at least m consecutive nodes cannot be connected with any
previous node. The structure of the mGCCS model is the same as
that of the traditional LMCCS model. The nodes in the mGCCS
model is in equidistant locations along a line, and the system fails
as long as there is at least m consecutive gaps. When m¼ 1, no gap
is allowed, and the mGCCS model reduces to a traditional LMCCS
model. The condition of the m consecutive gaps is the only con-
straint for the mGCCS model. Another generalization of the LMCCS
model is the LMCCS with the constraint of n total gaps (LMCCS-N)
[2]. The LMCCS-N fails if it contains at least n nodes disconnected
with any previous node. In other words, the LMCCS-N fails if the
total number of gaps reaches a specified limit n. The structure of
the LMCCS-N model is the same as that of the traditional LMCCS
model. The nodes in the LMCCS-N model is also in equidistant
locations along a line. The traditional LMCCS model is a special
case of the LMCCS-N model with n¼ 1. Since the LMCCS-N model
is only focused on the constraint of the total number of gaps, it is
not suitable for the LMCCS with the constraint of consecutive gaps.
Another extended model of LMCCS is the LMCCS with the com-
bined gap constraints (m/nCCS) [24]. The m/nCCS model fails if
there exist at least m nodes not connected with any previous node
or at least n consecutive nodes not connected with any previous
node. The structure of the m/nCCS model is the same as that of the
traditional LMCCS model. The nodes in them/nCCS model is also in

equidistant locations along a line. In the traditional LMCCS model
[1,4,15,16] and its extended models: LMCCS-N [2], mGCCS [23],
and m/nCCS [24], the structures are the same and the distances
between the adjacent nodes are equal to a basic length unit, which
may be not true in many practical applications.

Take the linear wireless sensor networks for example, sensors
are usually allocated to the non-uniform distributed nodes along a
line. The structure is shown in Fig. 1. Each sensor can cover dif-
ferent zones, which is dependent on the internal operation modes
and the external environment factors, and the size of covered
zones can vary discretely over different sensors. They must detect
some objects that traverse the line. Usually, there are two kinds of
objects: small objects and large objects. If a gap exists along the
line, some small objects can traverse the line, and cannot be
detected. If the number of consecutive gaps exceeds the size of a
large object, the large object can traverse the line, and otherwise it
cannot pass the line. When the objects pass the line, they cannot
be detected, and then the system may not work. The system
consists of two different types of failures: one is subject to the
number of undetected objects (as shown in Fig. 1(c)), and the other
is due to a large object being undetected (as shown in Fig. 1(b)).
That is to say, when the number of undetected objects exceeds a
pre-specified value by the engineering requirement, the system
fails. Moreover, when a large object passes the line, it will be
undetected, and then the system fails. When either of the two
different types of failures happens, regardless of which one hap-
pens first, the system fails. In other words, the system survives if
neither of the two different types of failures occurs (as shown in
Fig. 1(a)).

The traditional LMCCS model and its extended models: LMCCS-
N [2], mGCCS [23], and m/nCCS [24], can also not be applied
directly to evaluate the crude oil transportation system with the
unevenly distributed nodes. A crude oil transportation system is a
linear long distance transport system. It supplies crude oil from oil
well to a refinery, which is composed of crude oil transportation
pipelines and crude oil pumps. Oil pumps are located at the con-
secutive nodes between the pipelines. They provide enough
pressure to transfer the crude oil. The distances between any two
adjacent nodes are usually not equal because of the external
environment factors. Fig. 2 shows a crude oil transportation sys-
tem. Oil pumps are the key instruments in the crude oil trans-
portation system. In certain degree, the crude oil transportation
pipelines remain intact. If there exist nodes that are not connected
with any previous node, the oil cannot be transferred to these
nodes by the system and the dynamic bypass transfer instruments,
such as oil truck and tank truck, should be applied. With the
constraints, such as transportation capacity, energy consumption
and greenhouse gas emissions, the bypass instruments cannot be
competent for too many consecutive gaps. Subject to budget cost
constraint, the amount of the bypass instruments is also limited,
which limits the total number of the gaps. Either when the
number of consecutive gaps exceeds one pre-specified value, or
when the number of total gaps exceeds some pre-specified value,
the system fails.

Fig. 1. Linear multistate connected sensors in working state (a), and failed state (b,c).

Nomenclature

Ej set of consecutively ordered nodes 1; :::; j
� �

Tj the most remote location with which the nodes in the
set Ej can be connected

Gj the most remote location with which the node j can be
connected directly

gj;k k-th realization of r:v: Gj

pj;k probability of the realization r:v: gj;k
Gj vector of different realization of Gj

Pj vector of probabilities of random realization of Gj

1 Að Þ having the value 1 when A is true and the value
0 when A is false
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