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a b s t r a c t

Simulation of neutron transport problem is the kernel of nuclear reactor physics, whose application, how-
ever, is limited by the exorbitant computational cost and complex geometry structure. This paper pre-
sents a lattice Boltzmann method (LBM) for multi-group neutron transport process and proposes a
streaming-based block-structured adaptive-mesh-refinement (SSAMR) technique. The neutron lattice
Boltzmann equation is deduced from the neutron transport equation and the macroscopic neutron diffu-
sion equation can be recovered from neutron lattice Boltzmann equation via the Chapman-Enskog expan-
sion, which makes the kinetic significance of lattice Boltzmann equation clearly. The significance of
relaxation time for neutron LBM is further discussed for the first time, and the factors affecting the neu-
tron relaxation process are studied deeply also. After establishing the neutron LBM, the SSAMR technique
is applied to efficiently utilizing the computational resources of proposed LBM. To simply achieve the
data communication between different meshes and eliminate the discontinuity of scalar neutron flux,
a data exchange technique based on the streaming process of LBM is adopted. Simulation results show
that the proposed LBM can be applied to solving neutron transport process in all dimensions, and the
SSAMR technique can not only effectively reduce the computational cost, but also be easily implemented.
This work may provide some new perspectives for solving the neutron transport process and a powerful
thought for large and complex engineering calculation.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Propagation of neutron particles within a scattering and absorb-
ing medium has received a substantial amount of interests from
within the research community, including astrophysics, nuclear
reactor physics, nuclear reactor design and neutron capture thera-
pies (mainly in boron neutron capture therapy) (Barth, 2003; Oka,
2014). Theoretically, this process can be described by neutron
transport equation (NTE) (Davison, 1957), and its integro-
difference nature makes this highly dimensional equation difficult
to solve. In recent years, researchers have been devoting to the
numerical solution of neutron transport problem, including
numerical technique and computational efficiency.

Over the last half century, a vast array of numerical techniques
have been established and developed on both statistical approach,
i.e., the Monte Carlo method (MCM) (Guo et al., 2017; Li et al.,
2016a, 2018; Wang et al., 2015), and the deterministic technique,

such as the discrete-ordinate method (DOM, also be known as
SN) (Owens et al., 2016), the spherical harmonics method (PN)
(Brunner and Holloway, 2005), the method of characteristic
(MOC) (Liu et al., 2017; Liu et al., 2011; Zhang et al., 2011) and
the finite element method (FEM) (Mercimek and Özgener, 2014).
The MCM is valuable for its high precision and strongly capability
of treating complex geometry (Modest, 2003). Whilst all these
techniques have been applied to varying degrees of success, the
deterministic methods, perhaps, have received more attention
owing to its higher efficiency. The main idea of the deterministic
method is to simulate the neutron transport processes by reducing
and solving a series of mathematical physical equations. In solving
the NTE, one can adopt the SN or PN method to reduce the angular
dependence and solves it by some mature numerical techniques
such as MOC and FEM. However, these techniques require an exor-
bitant computational cost for solving the multi-dimensional prob-
lems. In addition, for the multi-physical nature in nuclear reactor,
the coupling for neutronics and thermal-hydraulics should be con-
sidered for better safety analysis of nuclear reactor (Bindra and
Patil, 2012). Thus, an algorithm suitable for coupling solution and
with lower computational cost should be developed.
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In comparison, the lattice Boltzmann method (LBM) may be an
optional deterministic method, which solves a series of simple lin-
ear lattice Boltzmann equations (LBE) instead of the original gov-
erning equation (Peng et al., 2006). In solving the hydrodynamic,
the LBM shows some excellent characters, such as simple construc-
tion, natural mesoscopic foundation, high efficiency of parallel
computations and easy treatment for complex boundaries (Guo
and Shu, 2013; Succi, 2001). Due to its attractive advantages, the
LBM has been extended to many other fields, such as partial differ-
ence equations (Chai et al., 2008), multiphase flow (Li et al., 2016b;
Wang et al., 2016), inviscid compressible flow (Li et al., 2009), por-
ous medium (Liu and He, 2016; Zhao et al., 2016), phonon trans-
port (Guo and Wang, 2016), and others (Bernaschi et al., 2001;
Liu and He, 2015; Shan and Chen, 1993; Xuan et al., 2007; Yan
et al., 2013). More recently, some researchers extended the LBM
to the particle transport problem and received some good solu-
tions. Mishra et al. (Asinari et al., 2010; Mishra et al., 2014;
Mishra and Vernekar, 2012; Vernekar and Mishra, 2014) developed
the LBM for steady-state radiative transfer problem and obtained
good results. Bindra et al. (Bindra and Patil, 2012; Gairola and
Bindra, 2017) extended the LBM for steady-state neutron transport
in source-driven condition and studied the coupled problems on
the basis of LBM (Mcculloch and Bindra, 2016), indicating that
the strongly coupling capability of LBM makes it possible for easily
achieving full-coupled multi-physics calculation. To establish a
physics-based framework rather than a partial differential equa-
tion solver, the LBE should be derived based from Chapman-
Enskog expansion and the corresponding physical meaning of each
parameter should be found out.

Although a good numerical method can effectively improve the
computational efficiency, it cannot be ignored that the computa-
tional accuracy is closely related to the computational cost. The lar-
ger computational capacity is required by the higher resolution.
With the developments of computational speed and memory, a lar-
ger scale computation has become more feasible, but it is still
insufficient for full region fine calculation by improving the hard-
ware alone. On the other hand, in nuclear reactor simulation with
large variations in the spatial dimension, finer resolution is only
required near the assembly boundaries due to the mutation of
the media properties such as macroscopic scattering and absorbing
cross sections, whilst other domains can be solved with coarser
mesh. For these reasons, the adaptive-mesh-refinement (AMR)
technique (Donat et al., 2014; Lovett et al., 2015; Tölke et al.,
2006) is an optional technique, which adopts non-uniform grids
to efficiently reduce the computational cost in the case of guaran-
teed accuracy. According to this technique, the finer mesh is only
adopted in the positions where higher spatial resolution is
required, then the computational resources can be efficiently saved
with reasonable accuracy solutions (Gourma et al., 2013). This
advantage makes the AMR technique been widely adopted in
numerical simulations, including partial difference equations
(Tang et al., 2003), shock-induced combustion (Yuan and Tang,
2007), and multi-pahse flow (Hu et al., 2009). Recently, some
researchers have studied the AMR technique for neutral particle
transport with DOM (Baker, 2002; Lathouwers, 2011), FEM
(Mirza et al., 2007; Ragusa and Wang, 2010; Wang, 2009) and
spectral element method (Nahavandi et al., 2015). Moreover, the
block-structured adaptive-mesh-refinement (SAMR) technique
(Baker, 2002; Fakhari and Lee, 2014; Hittinger and Banks, 2013;
Luitjens and Berzins, 2011; Ralf, 2011) is a branch to simplify the
implementation of AMR technique, which covers the computa-
tional domain with a series of blocks, and applies the structured
uniform mesh to each block. Comparing to the AMR technique,
the SAMR technique eliminates the difficult tree traversal for find-
ing the nearest neighbors of a given cell, and the tree-type data
structure (Teyssier, 2002) is actually removed. In addition, the

computational memory requirement for storing the data structure
is also reduced (Fakhari and Lee, 2014). In contrast to the previous
works, the LBM could be more convenient to incorporate with the
SAMR technique due to its simple implementation to solve the
neutron transport problem.

This paper focuses on two open issues on the neutron transport
modeling. The first issue concerns on the approach of establishing
the LBM for solving the neutron transport problem, determining
the physical meaning of the neutron lattice Boltzmann equation
(NLBE) and the unknown parameters. The second one concerns
on implementing the SAMR technique for the proposed LBM, and
reducing the amount of computational resources.

The remainder of this article is organized as below. In Section 2,
the detailed derivation of the neutron LBM is introduced, including
the neutron transport equation, the neutron LBM, the recovery of
macroscopic diffusion equation and the treatments of boundary
conditions. In Section 3, a streaming-based block-structured
adaptive-mesh-refinement (SSAMR) technique for present LBM is
proposed in detailed and the implementation is listed at the rest
of this section. Section 4 tests three numerical benchmark prob-
lems to verify the LBM and the SSAMR technique. The concluding
remarks are finally summarized in Section 5.

2. Lattice Boltzmann equation for neutron transfer

In this section, the NTE is converted to a NLBE and the macro-
scopic diffusion theory are recovered from the NLBE via the
Chapman-Enskog expansion. The treatments of typically vacuum,
bare and reflective boundary conditions are listed subsequently.

2.1. Neutron lattice Boltzmann model

Theoretically, the process of neutral particle propagation in a
homogeneous scattering and absorbing medium can be governed
by a linear BTE, and the NTE is its branch (Duderstadt and
Hamilton, 1976)
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where v represents the speed of a neutron particle transporting
within the medium (cm/s); X = im + jg + kn = isinhcosu + jsinhsinu
+ kcosh is the angular direction with h and u being zenith and cir-
cumferential angle, respectively; w (r, X, t) is the angular neutron
flux distribution corresponding to the position r, angular direction
X and time t; Rt (r, t) is the macroscopic total cross section
and Rs (r, t) is the macroscopic scattering cross section (cm�1);
Ra (r, t) is macroscopic absorbing cross section which satisfies
Ra (r, t) = Rt (r, t) – Rs (r, t); Q(r, X, t) represents the angular
source term; f (r, X’ ? X) is the scattering phase function from
direction X’ to direction X. For an isotropic scattering condition,
f (r, X’ ? X) = 1/4p.

Multiplying the velocity v simultaneously on both sides of the
Eq. (1), one obtains
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where v = vX is the particle’s velocity vector.
In light of discrete ordinate, the continuous angle domain can

be divided into a series of non-overlapping intervals. Integrating
the Eq. (2) over each region, one can obtain the discrete-ordinate
NTE
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