
Adaptive expansion order for diffusion Variational Nodal Method

Boning Liang, Hongchun Wu, Yunzhao Li ⇑
School of Nuclear Science and Technology, Xi’an Jiaotong University, China

a r t i c l e i n f o

Article history:
Received 13 October 2017
Received in revised form 23 January 2018
Accepted 14 March 2018
Available online 21 March 2018

Keywords:
PWR core neutron-diffusion calculation
Variational Nodal Method
Adaptive technique
CMFD
NECP-Bamboo

a b s t r a c t

The Variational Nodal Method (VNM) has been employed as the diffusion module in our PWR core anal-
ysis code Bamboo-Core within our PWR fuel management code system NECP-Bamboo. It expands the
nodal volumetric flux and surface partial currents into the sums of orthogonal basis functions without
using the transverse integration technique. To reduce the extra computing cost by the uniform expansion
order setting, an adaptive expansion order technique has been developed in this paper. After estimating
the net currents between each pair of neighboring nodes by using the Coarse-Mesh Finite-Difference
(CMFD) technique, it estimates the required expansion orders in each node analytically. This technique
increases the complexity of the code, but reduces the computational efforts both in computing time
and memory storage by a factor of about 5 and 4, respectively. In addition, the CMFD acceleration is also
employed to further improve the performance of the code. It is demonstrated by the numerical results
that the CMFD acceleration technique can provide a speedup ratio of about 17.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

As the key component of the Pressurized Water Reactor (PWR)
software for nuclear power plants, core analysis code indicates the
nuclear power development. Hence, Nuclear Engineering Compu-
tational Physics Lab. (NECP) in Xi’an Jiaotong University, China
developed a PWR core analysis code Bamboo-Core within our
PWR fuel management code system NECP-Bamboo (Li et al.,
2015). Currently, it contains several modules including a general-
ized cross section module, diffusion module using the Variational
Nodal Method (VNM) (Li, 2017; Lewis and Miller, 1984; Carrico
et al., 1992), depletion calculation using the traditional macro-
scopic and microscopic models, thermal-hydraulics module solv-
ing the parallel multi-channel heat transfer equation and 1D heat
conduction equation.

The VNM was first developed by Northwestern University and
Argonne National Laboratory (ANL) to solve the multi-group
(MG) steady-state neutron-diffusion and -transport equations
mainly for fast reactor core calculations. It uses a variational prin-
ciple for the even-parity form of the Boltzmann neutron-transport
equation. In this variational principle, the odd-parity Lagrange
multipliers defined along the nodal interfaces guarantee neutron
conservation for each node. The classical Ritz variation method is
employed with orthogonal polynomials in space and spherical har-

monics in angle. Nodal response matrices then can be formed for
the volumetric flux moments and surface partial current moments.
The VARIANT code (Palmiotti et al., 1995), developed at ANL in mid
90 s, is the first production code based on the Varitational Nodal
Method. It has been employed by both the REBUS code (Toppel
and Capability, 1983) in ANL and the ERANOS code (Doriath
et al., 1001) in Europe for routinely fast reactor core design. In
2007, a new version of the VARIANT code named NODAL was
developed in ANL as one of the solvers in the UNIC package
(Palmiotti et al., 2007; Li, 2013). In 2011, it has also been imple-
mented into the INSTANT code (Wang et al., 2011) in Idaho
National Laboratory (INL) as a solver of RattleSnake (DeHart
et al., 2016). In 2014; the VNM code NECP-Violet (Wang et al.,
2014; Wang et al., 2016; Li et al., 2015) was developed as the neu-
tron diffusion module of the Bamboo-Core code for PWR core cal-
culation due to its advantages in control rod cusping effect
elimination, pin power reconstruction, consistency of the mathe-
matical and physical adjoint fluxes. Additionally, the NECP-Violet
code was then extended to solve the neutron transport equation
in hexagonal-z geometry (Li et al., 2017), to be employed as the
solver of our fast reactor core calculation code system NECP-
SARAX (Du et al., 2017).

Different from fast reactor core neutron transport applications,
PWR core neutron diffusion calculation has to provide not only the
assembly- or node-averaged power distribution, but also the pin-
wise power or flux distribution within each node or assembly.
Especially for VNM, the detailed flux distribution within each node
is expected to be provided directly by constructing the expansion
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moments and the basis functions together, which is different from
other nodal diffusion methods with transverse integration. How-
ever, high-accuracy especially for the pin-wise distribution
requires high-order polynomial expansion in space, which further
increases the spatial polynomial expansion order compared with
the traditional PWR core nodal methods. Of course, it costs more
computing time and memory storage.

In fact, however, high-order expansion is unnecessary for each
node to obtain the same level of accuracy. The key issue is how
to identify the nodes that require high-order. Generally speaking,
the more rugged the nodal flux distribution is, the higher expan-
sion order would be required.

To reduce the extra computing cost by the uniform expansion
order setting, Dr. Zhang developed an adaptive technique for the
within-group (WG) iteration (Zhang et al., 2001; Zhang and
Lewis, 2002) in 2001 and 2002. It adjusts the expansion order on
nodal surface with the volumetric expansion order fixed. A poste-
riori error estimator (Zamonsky et al., 2000; Zienkiewicz and Zhu,
1992; Zienkiewicz and Zhu, 1997) after each WG iteration was
employed to estimate the best active surface expansion order. This
method does reduce the time of iteration, but still has to construct
the response matrixes with full expansion orders, leaving the nodal
response matrix construction computing time and storage require-
ment unreduced. Considering the facts that the code spends more
than 90% storage memory on response matrixes and that the calcu-
lation of response matrixes costs much more time than the itera-
tion process in the application cases of NECP-Violet especially for
a depleted core analysis, the effectiveness of the adaptive tech-
nique was limited.

Consequently, we developed a new polynomial expansion order
adaptive technique before nodal response matrixes calculation by
pre-estimating the effective multiplication factor and the surface
net currents. The Coarse-Mesh Finite-Difference (CMFD) is
employed to estimate those quantities. As a byproduct, the CMFD
(Zimin et al., 1998; Smith, 1986; Zimin and Ninokata, 1997;
Engrand and Maldonado, 1992; Smith, 1983; Joo, 1998; Hotta
et al., Nov. 1999; Moon et al., 1999) acceleration for VNM was also
investigated to further improve the performance of the code.

The rest of this paper is organized as following. Section 2
describes the theory of the adaptive technique together with the
CMFD acceleration. Section 3 assesses the adaptive technique and
CMFD acceleration numerically by using two typical PWR core cal-
culation problems. Section 4 makes the summary.

2. Theoretical formulation

Before the adaptive technique is described in detail, we will
introduce the Variational Nodal Method (VNM) in Sections 2.1
and 2.2, and the Coarse-Mesh Finite-Difference (CMFD) accelera-
tion in Section 2.3 as the foundation of the adaptive technique in
Sections 2.4 and 2.5.

2.1. The VNM Method

The VNM theory starts with the three-dimensional (3D) multi-
group neutron-diffusion equation with its albedo boundary
condition:

�r � DgrUgðrÞ þ Rr;gUgðrÞ ¼ Rs;gUgðrÞ þ SgðrÞ; g ¼ 1;�;G ð1Þ

SgðrÞ ¼
XG
g0–g

Rg0!gUg0 ðrÞ þ
vg

keff

XG
g0¼1

mRf ;g0Ug0 ðrÞ ð2Þ

Ug � 2JTgnc ¼ bc;g � ðUg þ 2JTgncÞ ð3Þ

where g and g0 is the energy group index, G is the total number of
energy groups, Dg is the diffusion coefficient (cm�1), Rr;g is the
transport corrected removal cross section (cm�1), Rg0!g is the scat-
ting cross section (cm�1) from group g0 to group g, vg is the fission
neutron spectrum, keff is effective multiplication factor, v is the
average number of fission neutrons per fission, Rf ;g0 is the fission
cross section (cm�1), r is the spatial coordinate (cm), UgðrÞ is volu-
metric flux (cm�2�s�1), SgðrÞ is volumetric source (cm�2�s�1), c is the
surface index, bc;g is the albedo, and nc is the unit normal vector of
surface c.

On the basis of Galerkin variational principle, the neutron-
diffusion equation (coordinate index omitted) turns out to be:

F½Ug ; Jg � ¼
X
v
Fv ½Ug ; Jg � ð4Þ

And the node v contribution

Fv ½Ug ; Jg � ¼
Z
v
dVfDrUgrUg þRr;gU

2
g �2UgSggþ2

X6
c¼1

Z
c
Ug � JTgncdC

ð5Þ
where Jg ¼ �DgrU is a vector containing the surface net outgoing
current.

For each energy group and each node, the flux and source are
expanded as:

UgðrÞ ¼
XI

i¼1

ui;gf iðrÞ ¼ f Tug ð6Þ

SgðrÞ ¼
XI

i¼1

si;gf iðrÞ ¼ f Tsg ð7Þ

And the surface net current is expanded as

JTgðrÞnc ¼
XL

l¼1

jc;l;ghc;lðrÞ ¼ hT
cjc;g ð8Þ

where fi(r) and hc,l(r) are orthogonal polynomial basis functions
defined on nodal volume and surface respectively, I and L are the
number of corresponding expansion terms, ug, sg, jc,g, f and hc are
column vectors containing the corresponding moments and
functions.

Substituting the above expansions in Eqs. (6)–(8) into the func-
tional in Eq. (1), the source in Eq. (2) and the boundary conditions
in Eq. (3), and then requiring the functional to be stable in terms of
ug and jc,g respectively, yield:

sg ¼
XG
g0–g

Rg0!gug0 þ
vg

keff

XG
g0¼1

mRf ;g0ug0 ð9Þ

jþg ¼ Bgsg þ Rgj
�
g ð10Þ

ug ¼ Hgsg � Cgðjþg � j�g Þ ð11Þ

j�g ¼ 1
4
MTug �

1
2
jg ð12Þ

jg ¼ jT1;g � � � jTc;g � � �
h iT ð13Þ

where the response matrices are block diagonal over spatial nodes
with their diagonal blocks

Bg ¼ 1
2
½Gg þ I��1CT

g ð14Þ
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