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a b s t r a c t

Assessing the impact of random media for eigenvalue problems plays a central role in nuclear reactor
physics and criticality safety. In a recent work (Larmier et al., 2018a), we have applied a probabilistic
model based on stochastic tessellations in order to describe fuel degradation following severe accidents
with partial melting and re-arrangement of the resulting debris. The distribution of the multiplication
factor and of the kinetics parameters as a function of the mixing statistics model and of the typical cor-
relation length of the tessellation were examined in detail for a benchmark configuration consisting in a
fuel assembly with UOX or MOX fuel pins. In this paper, we extend our previous findings by including in
the stochastic tessellation model the effects of anisotropy that might result from gravity and material
stratification: for this purpose, we adopt the broad class of anisotropic Poisson geometries. We discuss
the behaviour of the key observables of interest for eigenvalue problems in anisotropic tessellations by
revisiting the fuel assembly benchmark calculations proposed in (Larmier et al., 2018a). The effects of ani-
sotropic random media on the multiplication factor, on the kinetics parameters and on the flux spectrum
will be carefully examined.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Random media of interest in reactor physics typically belong to
two families: stochastic inclusions of fissile chunks within a back-
ground matrix (Murata et al., 1996; Liang et al., 2013; Brown and
Martin, 2004) and stochastic tessellations composed of a collection
of fissile and non-fissile volumes obeying a given mixing statistics
(Pomraning, 1991a), such as those resulting from fuel degradation
in Three Mile Island unit 2 (Broughton et al., 1989; Hagen and
Hofmann, 1987; Hofmann, 1999) and at the Fukushima Daiichi
power plant (Tonoike et al., 2013; Gunji et al., 2017). Other appli-
cations of random media for criticality safety concern for instance
the analysis of the impact of poison grains for neutron absorbers
(Doub, 1961) or Pu grains in MOX fuels (Yamamoto, 2010), and
safety margins evaluation (Pomraning, 1999; Williams, 2000;
Williams and Larsen, 2001; Williams, 2013), especially for waste
storage (Williams, 2003).

Two distinct strategies can be adopted in order to describe neu-
tron multiplication in random media (Pomraning, 1991a), namely,
quenched disorder and annealed disorder. The goal of the annealed
disorder approach is to develop effective equations for the
ensemble-averaged observables, such as the celebrated

Levermore-Pomraning model (Pomraning, 1991a). When particle
transport is solved by Monte Carlo simulation, the annealed disor-
der approach is implemented by introducing disorder-averaged
neutron displacement laws that are supposed to ‘mimic’ the effects
of the spatial heterogeneities on neutron trajectories: this is for
instance the case of the Chord Length Sampling (CLS) algorithm,
inspired by the Levermore-Pomraning equations (Zimmerman,
1990; Zimmerman and Adams, 1991; Donovan and Danon, 2003;
Donovan et al., 2003). By construction, spatial correlations are
neglected by these algorithms. Generalizations of CLS including
partial memory effects and spatial correlations have been also pro-
posed (Zimmerman and Adams, 1991; Donovan and Danon, 2003;
Donovan et al., 2003; Larmier et al., 2018c). In order to assess the
accuracy of such approximate methods, reference solutions are
mandatory (Levermore et al., 1986; Adams et al., 1989; Malvagi
et al., 1992; Su and Pomraning, 1995; Zuchuat et al., 1994;
Larsen and Vasques, 2011; Brantley, 2011; Donovan and Danon,
2003; Donovan et al., 2003; Brantley and Palmer, 2009; Brantley,
2009; Larmier et al., 2017a, 2018b).

In the quenched disorder approach, the random spatial config-
urations (with associated material compositions) are first defined
based on a probabilistic model. The Boltzmann eigenvalue equa-
tion is then solved for each configuration, and the statistical
moments of the multiplication factor and of the kinetics parame-
ters are obtained by taking the ensemble averages with respect
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to the realizations (Pomraning, 1991a,b, 1999). The quenched dis-
order approach leads to reference solutions, because the effects of
disorder-induced spatial correlations on neutron trajectories are
correctly preserved. Analytical results for the ensemble averages
demand huge theoretical efforts (Pomraning, 1999; Williams,
2000, 2003; Williams and Larsen, 2001; Williams, 2004): advances
have been made possible by resorting to perturbation theory, but
several simplifications are needed (Pomraning, 1999; Williams
and Larsen, 2001; Williams, 2004). Considerable progress can be
nonetheless achieved by using Monte Carlo methods in order to
generate realizations taken from the sought distribution and then
using a transport code to solve the eigenvalue problem for each
sampled configuration. In the context of eigenvalue problems,
intensive research efforts have been devoted so far to the class of
stochastic inclusions (Murata et al., 1996; Liang et al., 2013;
Brown and Martin, 2004; Liang and Ji, 2011; Griesheimer et al.,
2010; Ji and Martin, 2011). Eigenvalue problems for stochastic tes-
sellations have comparatively received less attention, and have
been mostly confined to one-dimensional systems (Pomraning,
1999; Williams and Larsen, 2001; Williams, 2004).

In order to overcome some of these limitations, in a recent work
we have adopted three-dimensional stochastic tessellations as a
idealized model to investigate neutron kinetics following random
fuel degradation (Larmier et al., 2018a). For this purpose, we have
introduced a series of benchmark configurations consisting of a
17� 17 UOX or MOX assembly, where a portion of the assembly
was replaced by a Poisson, Voronoi or Box tessellation with fuel,
cladding and moderator obeying ternary mixing statistics
(Pomraning, 1991a). For each realization, criticality calculations
were performed by using the Monte Carlo transport code
TRIPOLI-4� developed at CEA (Brun et al., 2015). We assessed the
behaviour of the key safety parameters, including the multiplica-
tion factor keff , the effective delayed neutron fraction beff and the
effective neutron generation time Keff , as a function of the tessella-
tion law and of the size of the material chunks.

For real life applications, fuel degradation will generally give
rise to anisotropic re-arrangements, possibly due to gravity and
other material stratification phenomena (Hagen and Hofmann,
1987; Hofmann, 1999). To the best of our knowledge, neutron
transport in anisotropic random media has been only considered
in relation to the Levermore-Pomraning model (Pomraning,
1992). For the sake of simplicity, the stochastic tessellations inves-
tigated in Larmier et al., 2018a were isotropic (Poisson and Voro-
noi) or quasi-isotropic (Box). In this work, we will extend our
previous results concerning reference solutions for eigenvalue
problems in random media by relaxing the isotropy hypothesis.

This paper is organized as follows: in Section 2 we will revisit
the fuel assembly benchmark introduced in (Larmier et al.,
2018a) by introducing 3-dimensional anisotropic Poisson stochas-
tic tessellations as a model of fuel degradation. Then, simulation
results for the multiplication factor, the kinetics parameters and
the flux spectrum will be analysed in Section 3. Conclusions will
be finally drawn in Section 4.

2. A model of assembly with fragmented fuel pins

We begin by revisiting the simple benchmark model introduced
in (Larmier et al., 2018a), which we briefly recall in the following in
order for this paper to be self-contained. As a reference configura-
tion we will consider an assembly composed of 17� 17 square fuel
pin-cells of side length d ¼ 1:262082 cm in the plane Oxy and of
height Lz ¼ 10 cm. Reflective boundary conditions are imposed
on all sides of the assembly. The fuel elements will be entirely
either of the UOX or MOX type: the respective material composi-

tions and temperatures, corresponding to Beginning Of Life (i.e.,
non-depleted) fuel, are the same as in (Larmier et al., 2018a).

In order to model a melted fuel assembly with random material
fragmentation, we assume that the fuel lattice is replaced by a
Poisson tessellation: the domain of the reference configuration is
partitioned by randomly generated planes drawn from an underly-
ing Poisson process (Miles, 1970; Schneider and Weil, 2008). Pois-
son tessellations represent an idealized mathematical model for
disordered media: they demand little information content, their
correlation function being exponential (Pomraning, 1991a;
Torquato, 2013). The key parameters of the Poisson tessellations
are the intensity q of the underlying Poisson process (carrying
the units of an inverse length), and the distribution HðnÞ of the nor-
mal vector n of the sampled planes (Schneider and Weil, 2008). In
dimension d ¼ 3;n can be characterized by assigning two angles,
namely the co-latitude h and the azimuth /. We have then
dHðnÞ ¼ dHðh;/Þ, or dHðnÞ ¼ dHðl;/Þ when using the cosine
l ¼ cosðhÞ. The explicit construction for isotropic Poisson tessella-
tions has been provided in (Larmier et al., 2016, 2018a), where n
was taken to be uniformly distributed on the unit half-sphere,
namely,

Hisoðh;/Þ ¼ 1
2p

sinðhÞ; ð1Þ

with 0 6 h < p and 0 6 / < p. In order to probe the effects of the
angular distribution on our fuel fragmentation model, we will intro-
duce a few examples of anisotropy laws Hðh;/Þ that might mimic
the effects of material stratification along the z axis. In other words,
we will preferentially sample planes whose normal vector is paral-
lel to the z axis. For the sake of simplicity, we will assume that the
distribution HðnÞ can be factorized with respect to the two vari-
ables, and that the distribution of / is uniform (in other words,
we preserve the invariance by rotation around the z axis). A quad-
ratic anisotropy can be introduced in the form

Hquadraticðl;/Þ ¼ 3
2p

l2 for � 1 6 l < 1; ð2Þ

which has its minimum in l ¼ 0 and the maxima in l ¼ �1. A gen-
eral case that might be of interest for applications is a piece-wise
constant distribution, e.g.,

Hhistogramðl;/Þ ¼ 1
A
�

80 for � 1 6 l < �0:95
4 for � 0:95 6 l < �0:5
2 for � 0:5 6 l < �0:25
1 for � 0:25 6 l < 0;

8>>><
>>>:

ð3Þ

and symmetric in the range 0 < l < 1, which has maxima around
l ¼ �1. The normalization constant for this example reads
A ¼ 13:1. More complex functional forms for HðnÞ can be easily con-
ceived. For the special case of Poisson-Box tessellations with three
fixed orientations parallel to the orthogonal Cartesian axes we have

Hboxðh;/Þ ¼ 1
3
d /ð Þd h� p

2

� �
þ 1
3
d /� p

2

� �
d h� p

2

� �
þ 1
3
d hð Þ 1

p
: ð4Þ

The typical size of the fuel fragments will be imposed by setting the
tessellation density q (Larmier et al., 2018a), which is related to the
average chord length K within the tessellation by q ¼ 1=K (Larmier
et al., 2016). For our benchmark, we have assumed that the assem-
bly is composed of only three materials (fuel, cladding and moder-
ator), which leads to a ternary stochastic mixture: each polyhedron
of the Poisson tessellation is assigned a material composition by
attributing a ‘color’, namely, ‘F’ for fuel, ‘C’ for cladding and ‘M’
for moderator. The corresponding coloring probabilities pF;pC and
pM ¼ 1� pF � pC are chosen so that for each material i the
ensemble-averaged volumic ratio hpii coincides with that of a pin-
cell before fragmentation:
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