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a b s t r a c t

Verification, validation and uncertainty quantification (VVUQ) have become a common practice in
thermal-hydraulics analysis. An important step in the uncertainty analysis is the sensitivity analysis of
various uncertainty input parameters. The common approach for computing the sensitivities, e.g.
variance-based and regression-based methods, requires solving the governing equation multiple times,
which is expensive in terms of computational effort. An alternative approach for computing the sensitiv-
ities is the adjoint method. The cost of solving an adjoint equation is comparable to the cost of solving the
governing equation. Once the adjoint solution is obtained, the sensitivities of various parameters can be
obtained with little effort. However, successful adjoint sensitivity analysis of the two-phase flow is rare.
In this work, an adjoint sensitivity analysis framework is developed for the two-phase two-fluid model
based on a new upwind numerical solver. The adjoint sensitivity analysis framework is tested with a
steady-state boiling pipe problem. Results show that the adjoint sensitivity analysis framework is work-
ing as expected. The sensitivities obtained with the adjoint method are verified by the sensitivities
obtained with a forward method.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, verification, validation and uncertainty quantifi-
cation (VVUQ) have become a common practice in thermal-
hydraulics analysis. In general, these activities deal with
propagation of uncertainties in computer code simulations, e.g.
through system analysis codes. An important step in uncertainty
analysis is the sensitivity analysis of various uncertain input
parameters. A common approach to calculate sensitivity includes
variance-based and regression-based methods. However, these
methods require solving the system of interest (in our case, two-
phase flow) multiple times, sometimes 100s of times, using differ-
ent input parameters, which is very expensive in terms of CPU
time. An alternative approach for calculating sensitivities is the
adjoint method. The cost of solving an adjoint equation is compa-
rable to the cost of solving the governing equation (forward equa-
tion, e.g. the two-phase two-fluid model equation). However, once
the adjoint solution is obtained, the sensitivity to an arbitrary
number of parameters can be calculated at the same time.

There is a long history of using the adjoint method in optimal
control theory. The use of adjoint method for computing sensitiv-
ities came up in the nuclear industry in the 1940s. Later, the

adjoint method became popular in computational fluid dynamics
field (Marchuk, 1995; Giles and Pierce, 2000). Within the field of
aeronautical computational fluid dynamics, the use of adjoint
method has been seen in (Jameson, 1988, 1994; Jameson et al.,
1998; Nadarajah and Jameson, 2000). Adjoint problems arise natu-
rally in the formulation of methods for optimal aerodynamic
design and optimal error control (Giles et al., 1998, 2000, 2001;
Giles et al., 2003). Adjoint solution provides the linear sensitivities
of an objective function (e.g. lift force and drag force) to a number
of design variables. These sensitivities can then be used to drive an
optimization procedure. In a sequence of papers, Jameson devel-
oped the adjoint approach for the potential flow, the Euler equa-
tion, and the Navier-Stokes equation (Jameson, 1988, 1994;
Jameson et al., 1998; Nadarajah and Jameson, 2000). Many of these
methods were based on the continuous form of the governing
equation. These methods belong to the group of so-called continu-
ous adjoint method (Marchuk, 1995).

The application of the adjoint method to optimal aerodynamic
design is very successful. However, to the author’s best knowledge,
successful adjoint sensitivity analysis of the two-phase flow prob-
lems is rare. Cacuci performed an adjoint sensitivity analysis to
two-phase flow problems using the RELAP5 MOD3.2 numerical
discretization (Cacuci and Wacholder, 1982; Cacuci and Ionescu-
Bujor, 2000a,b). This method belongs to a group of so-called dis-
crete adjoint method (Marchuk, 1995). An application of Cacuci’s
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approach was illustrated by Petruzzi, 2008, where the approach
was applied to the blowdown of a gas from a pressurized vessel.

The objective of this paper is to develop an adjoint sensitivity
analysis framework for two-phase flow problems using the contin-
uous adjoint method. At first, a forward solver is built based on an
approximate Riemann solver to solve the two-phase flow prob-
lems. Then, an adjoint sensitivity analysis framework is developed
based on the forward solver. Finally, a numerical test with the
Christensen boiling pipe problem is performed to verify the adjoint
sensitivity analysis framework.

2. Forward solver

2.1. Flow model

For 1D problems, the basic two-phase two-fluid six-equation
model without any differential closure laws (Ishii and Hibiki,
2010; Team, 2012a; Bajorek et al., 2008) can be written in a com-
pact vector form as
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where U is the vector of conservative variables, F is the vector of
flux variables, Pix and Pit are the vectors related to the partial
derivatives of the void fraction, and S is the vector of source terms.
They are defined as
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This model assumes all pressure terms, including phasic pres-
sure and interfacial averaged pressure, are equal. Let the subscript
k ¼ l; g denote the liquid phase and gas phase, respectively. The
variables ak;qk;uk; ekð Þ denote the volume fraction, the density,
the velocity, and the specific internal energy of k-phase. The
summation of phasic volume fraction should be one, i.e.
al þ ag ¼ 1. p is the pressure of two phases. Ek ¼ ek þ u2

k=2 and
Hk ¼ ek þ p=qk þ u2

k=2 are the phasic specific total energy and
specific total enthalpy. Note that one more vector,W, is introduced
to denote the physical variables. The source vector S is modeled as
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where Cg is the net vapor generation rate due to wall vapor gener-
ation ðCwÞ and bulk vapor generation ðCigÞ, ui is the interface veloc-
ity, f i is the interfacial friction, f wk is the phasic wall friction, Qik is
the phasic interfacial heat flux, Qwk is the phasic wall heat flux, h0k is

the phasic enthalpy carried by the wall vapor generation term ðCwÞ,
and h�k is the phasic enthalpy carried by the bulk vapor generation
term ðCigÞ. Correlations based on RELAP5-3D code manual (Team,
2012a; Team, 2012c) are used to model these variables.

An appropriate Equation of State (EOS) is required to close the
system. For many practical problems in the nuclear thermal–
hydraulics analysis, the temperature of two phases are required
to model the source terms. In such a case, a useful EOS is given
by specifying the Gibbs free energy as a function of pressure and
temperature Tk, i.e.

gk ¼ gkðTk; pÞ; for k ¼ l; g ð4Þ
After specifying the specific Gibbs free energy, the phasic density
and specific internal energy are obtained from the partial deriva-
tives of the specific Gibbs free energy. The details about specifying
the EOS through the specific Gibbs free energy are referred to
(Wagner and Kruse, 1998; Hu, 2018).

2.2. Numerical method

For 1D problems, the spatial discretization is shown schemati-
cally in Fig. 1. For simplicity of the notation, a uniform spatial dis-
cretization is considered. All unknown variables are stored in the
cell center (co-located mesh). On each side of the physical domain,
ghosts cells are used to deal with the boundary conditions.

The system is updated in time with the forward Euler method,
i.e.

Unþ1
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i þ DtLy Un
i

� � ð5Þ
where the time step is determined by the Courant-Friedrichs and
Lewy (CFL) condition

Dt ¼ CFL
Dx
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ð6Þ

where kmax is the maximum wave speed (eigenvalue) at the current
time step.

Ly contains the discretization of the differential terms and the
source terms, i.e.
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where F̂iþ1=2 and F̂i�1=2 are numerical fluxes at cell boundaries. The
Pit@ag=@t part is approximated with a first-order finite difference
method and Pix@ag=@x is approximated with second-order central-

difference method. In this paper, a Roe-type numerical flux F̂Roe
iþ1=2

(Toro, 2013; Glaister, 1988) is used.
Let Ac be a 6-by-6 matrix defined as

Ac � @F
@U

ð8Þ

Let kc;m and Kc;m, form ¼ 1; . . . ;6 be the eigenvalues and right eigen-
vectors of the matrix Ac . The subscript c denotes that the Jacobian
matrix and eigenvalues/eigenvectors are obtained with the

Fig. 1. Schematic of the 1D spatial discretization.
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