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a b s t r a c t

In this article, a new method for the calculation of nuclear reactivity using an equivalent matrix function
for the concentration of delayed neutron precursors is presented for any given form of nuclear power. The
matrix function can be written in a homogeneous system which is solved using an exponential matrix. Its
solution requires to integrate the matrix function with respect to time, which originates a second matrix.
The exponential form of the resulting matrix is calculated by analytical diagonalization, which reduces
the computational cost by avoiding numerical calculation of the eigenvalues, eigenvectors or matrix
inversion. The results of the nuclear reactivity calculations show a good precision of the proposed method
for different time steps.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The processes that take place in a nuclear reactor core are
mainly due to the physical phenomenon of nuclear fission. These
processes are generated from the reaction of thermal neutrons
with heavy atoms such as U-235 and Pu-239. The result of the con-
trolled chain reaction is a great amount of energy which is har-
nessed by nuclear reactors to generate electrical power
(Duderstadt and Hamilton, 1976). In practice, control within the
core of these reactors is essentially maintained through a system
of reactivity measurements. The precise computational calculation
of the nuclear reactivity will guarantee the safe operation of the
nuclear reactor, essentially in the ignition tests and when program-
ming the movement of the control rods given a variation of the
nuclear power.

The development of digital reactivity meters is based on the
inverse equation of point kinetics. Several studies have determined
the reactivity with methods that allow the discretization of the
integral term associated with this equation, which is known as
nuclear power history (Shimazu et al., 1987; Binney and Bakir,
1989; Ansari, 1991; Hoogenboom and Van Der Sluijs, 1988;
Kitano et al., 2000; Tamura, 2003). The calculation of nuclear reac-
tivity without this term has also been formulated using derivatives
of nuclear power and the least squares method to control noise
(Suescún et al., 2007). With the same objective of calculating the
nuclear reactivity, other methods such the Discrete Laplace Trans-
form (Suescún et al., 2008), the Euler-Maclaurin Formula (Suescún

et al., 2013) and the three-and five-point formulas of the Lagrange
method (Malmir and Vosoughi, 2013) have been implemented.

For the design of real-time reactivity meters, methods that do
not involve the history of nuclear power are necessary. Therefore,
recent studies have implemented multistep numerical methods
for the calculation of nuclear reactivity. Among them, the Ham-
ming’s generalized predictor-corrector method (Suescún et al.,
2014) and the generalized Adams-Bashforth-Moulton predictor-
corrector method (Suescún et al., 2016).

In this paper, an alternative method for the calculation of
nuclear reactivity without using the nuclear power history is pre-
sented in a simple and accurate manner. The solution is given from
the matrix formulation of the concentration of delayed neutron
precursors in the equations of the point kinetics with different
forms of nuclear power.

2. Theoretical considerations

The point kinetics equations describe the time evolution of neu-
tron density and the concentration of delayed neutron precursors
in the reactor core. These equations can be derived from the neu-
tron diffusion equation, resulting in a system of m + 1 ordinary,
non-linear and strongly coupled differential equations. The mathe-
matical formulation of this system of equations for m groups of
delayed neutrons is represented by (Duderstadt and Hamilton,
1976):

dPðtÞ
dt

¼ qðtÞ � b
K

� �
PðtÞ þ

Xm
i¼1

kiCiðtÞ; ð1Þ
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dCiðtÞ
dt

¼ bi

K
PðtÞ � kiCiðtÞ; i ¼ 1;2; . . . ;m ð2Þ

with the following initial conditions:

Pðt ¼ 0Þ ¼ P0 ð3Þ

Ciðt ¼ 0Þ ¼ bi

Kki
P0 ð4Þ

where PðtÞ is the nuclear power, CiðtÞ is the concentration of the i-th
group of delayed neutron precursors ði ¼ 1;2; . . . ;mÞ, qðtÞ is the
reactivity, K is the neutron generation time, bi is the effective frac-
tion of the i-th group of delayed neutrons, b is the effective total
fraction, (b ¼ Pm

i¼1bi), ki is the decay constant of the i-th group of
delayed neutron precursors.

It is well known from the literature that the calculation of the
reactivity – which depends on the nuclear power form can be
determined in an exact way by means of the inverse point kinetics
equation (Duderstadt and Hamilton, 1976):

qðtÞ ¼ bþ K
PðtÞ

dPðtÞ
dt

� 1
PðtÞ

Xm
i¼1

kibi
hP0i
ki

e�kit þ
Z t

0
e�kiðt�t0 ÞPðt0Þdt0

� �
ð5Þ

However, this equation can’t be applied directly to a real-time
reactivity meter due to the history of the nuclear power denoted
by the integral term in Eq. (5). Therefore, it is convenient to use
Eq. (1) to obtain the reactivity qðtÞ:

qðtÞ ¼ bþ K
PðtÞ

dPðtÞ
dt

� K
PðtÞ

Xm
i¼1

kiCiðtÞ; ð6Þ

Once CiðtÞ is solved numerically from Eq. (2), its solutions are
replaced in Eq. (6) to determine the reactivity.

3. Proposed method

The scheme proposed in this section is based on piecewise con-
stant approximation (PCA) for the numerical solution of the equa-
tions of point kinetics with a source term (Kinard and Allen, 2004).
The PCA method considers this system of non-homogeneous equa-
tions in matrix form. Similarly, the set of m differential equations
for the concentration of delayed precursors of Eq. (2) can be repre-
sented by a non-homogeneous matrix form:

d~WðtÞ
dt

¼ A~WðtÞ~BðtÞ; ~Wð0Þ ¼ W
!

0 ð7Þ

where ~WðtÞ and~BðtÞ are vector functions of dimensionm and the W
!

0

are the initial conditions given by Eq. (4). Those are expressed as:

~WðtÞ ¼

C1ðtÞ
C2ðtÞ
C3ðtÞ
..
.

CmðtÞ

2
66666664

3
77777775
; ~BðtÞ ¼ PðtÞ

b1=K

b2=K

b3=K

..

.

bm=K

2
66666664

3
77777775
;W
!

0 ¼ P0

b1=ðKk1Þ
b2=ðKk2Þ
b3=ðKk3Þ

..

.

bm=ðKkmÞ

2
66666664

3
77777775

ð8Þ
Defining A as a m �m matrix of constants

A ¼

�k1 0 0 0
0 �k2 0 � � � 0
0 0 �k3 0

..

. . .
. ..

.

0 0 0 � � � �km

0
BBBBBBB@

1
CCCCCCCA

ð9Þ

The exact solution of the initial value problem given by Eq. (7)
can be solved by multiplying this equation by an integrating factor
expð�AtÞ to obtain:

d
dt

½expð�AtÞ~WðtÞ� ¼ expð�AtÞ~BðtÞ ð10Þ

Then, integrating both sides of Eq. (10) with respect to the time
from tn to tnþ1 we get:

expð�Atnþ1Þ~Wnþ1 � expð�AtnÞ~Wn ¼
Z tnþ1

tn

expð�AtÞ~BðtÞdt ð11Þ

where ~Wnþ1 ¼ ~Wðtnþ1Þ and ~Wn ¼ ~WðtnÞ. Solving Eq. (11) for ~Wnþ1 we
get the following equation

~Wnþ1 ¼ expðAhÞ~Wn þ expðAtnþ1Þ
Z tnþ1

tn

expð�AtÞ~BðtÞdt ð12Þ

where h ¼ tnþ1 � tn is the time step. From the solution of the inho-
mogeneous matrix representation given by Eq. (12) it is observed
that the second term depends on an integral expression. In this
paper, we propose a matrix function of dimension m + 1 in a homo-
geneous system that avoids the direct calculation of this integral.
This representation is equivalent to the set of m differential equa-
tions for the concentration of delayed neutron precursors of Eq.
(2) for a given a nuclear power and can be written as follows:

d~xðtÞ
dt

¼ SðtÞ~xðtÞ; ~xð0Þ ¼ x!0 ð13Þ

where

d~xðtÞ
dt

¼ d
dt

PðtÞ
C1ðtÞ
C2ðtÞ
..
.

CmðtÞ

2
66666664

3
77777775
; ~xðtÞ ¼

PðtÞ
C1ðtÞ
C2ðtÞ
..
.

CmðtÞ

2
66666664

3
77777775
; x!0 ¼ P0

1
b1=ðKk1Þ
b2=ðKk2Þ

..

.

bm=ðKkmÞ

2
66666664

3
77777775
ð14Þ

here d~xðtÞ
dt and ~xðtÞ are vector functions of dimension m + 1 and x!0

are the initial conditions given by Eqs. (3) and (4). Thus, the matrix
function SðtÞ is:

SðtÞ ¼

P0ðtÞ
PðtÞ 0 0 . . . 0
b1
K �k1 0 . . . 0
b2
K 0 �k2 . . . 0

. .
. . .

. . .
. ..

.
. . .

bm
K 0 0 . . . �km

0
BBBBBBBB@

1
CCCCCCCCA

ð15Þ

The matrix function SðtÞ has been defined upon the considera-
tion that it must contain the nuclear power PðtÞ which is known
for the calculation of the reactivity. For this reason, the nuclear

power P(t) is included in the vector function ~WðtÞ with its respec-

tive initial condition P0 in W
!

0 and the term P0 ðtÞ
PðtÞ for the matrix func-

tion S(t), producing a dimension increase of order m + 1 that
generates the homogeneous representation of the matrix. It can
be observed, using Eqs. (13)–(15) exactly how Eq. (2) is reproduced
and an equality in the first element that entails P0ðtÞ ¼ P0ðtÞ, with-
out producing any contradiction.

Solving Eq. (13) we get:

~xnþ1 ¼ exp
Z tnþ1

tn

SðtÞdt
� �

~xn for n ¼ 0;1;2; . . . ð16Þ

where ~xn is the value of the vector function at a time tn and ~xnþ1 is
the value at a later time tnþ1. The matrix function SðtÞ for the

138 D. Suescún-Díaz et al. / Annals of Nuclear Energy 116 (2018) 137–142



Download English Version:

https://daneshyari.com/en/article/8067037

Download Persian Version:

https://daneshyari.com/article/8067037

Daneshyari.com

https://daneshyari.com/en/article/8067037
https://daneshyari.com/article/8067037
https://daneshyari.com

