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a b s t r a c t

The stability and accuracy of an adaptive time step control scheme are analyzed for the transient diffu-
sion equation. This scheme is based on the commonly-implemented backward difference discretization
of the diffusion equation and recommends optimal time steps based on constraints applied to estimates
of the local truncation error. Methods are derived for both error estimation and error control, each of
which potentially impacts the stability of the scheme and the global accuracy of the solution.
Asymptotic stability and convergence of the recommended time steps are investigated theoretically
and demonstrated numerically to identify optimal realizations of the method. This adaptive time step-
ping scheme requires no solution evaluations or operator inversions beyond those already performed
in the adaption-free solution and requires no modifications to the numerical solution algorithm. As such,
this adaptivity scheme can be easily implemented in virtually any reactor physics simulation code based
on a backward difference discretization of transient neutronics.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Adaptive time integration schemes allow codes to optimally
select time steps to satisfy some prescribed error tolerance. These
schemes provide improved efficiency because time is not wasted
solving the system to a level of accuracy beyond relevance. More-
over, adaptive schemes remove the necessity for the user to select
time steps before the simulation has been run. For these reasons,
adaptive time stepping has received much attention, although typ-
ically formal methods have been restricted to multi-step and
multi-stage integration methods (e.g., Rabiti et. al., 2005; Shim
et. al., 2011) while informal methods are usually based on rather
ad hoc error criteria. Although there are common approaches for
doing this, there are no widespread methods that are easy to
implement, and routinely applied to reactor physics calculations.

In transient reactor physics the need for adaptive time stepping
is accentuated by the fact that there are multiple time scales
involved. From the neutronic perspective, the presence of both
prompt and delayed neutrons lead to time scales spanning orders
of magnitude, leading to a so-called ‘‘stiff” problem in time. In
addition, the reactor power is affected by transient thermal and
hydraulic conditions that are governed by separate physical pro-

cesses with independent time scales. These external effects influ-
ence the reactor power to a degree that is problem-dependent
and thus a priori unpredictable. Ideally, a neutronic solver should
be able to pick an optimal time step size adaptively based on the
current state of a transient. This promotes computational efficiency
and is also a key enabling technology for general asynchronous
simulations, wherein each constituent physical model is solved
only when solution accuracy dictates that it should be solved.

Recently a new method for adaptively selecting time steps for
backward Euler (implicit) finite difference solutions of the neutron
diffusion equation was developed (Hackemack and Pounders,
2014). The backward difference method was selected because of
its abundant use in current reactor physics codes. Moreover, the
adaptive method that was developed requires no fundamental sol-
ver modification or enhancement and thus can be implemented in
a straightforward manner into any existing code that is based on a
backward difference time solution.

This new method is conceptually simple, but numerical issues
arising from oscillating time step recommendations were observed
in some cases, caused by subtle mathematical differences in the
formulation of the method (Pounders and Boffie, 2015). In this
work, we present combinations of two different error predictors
and three different error constraints. Additionally, the asymptotic
convergence and stability of each combination is investigated the-
oretically and numerically to predict under what conditions these
oscillations occur.
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The scope of the present investigation is restricted to one-
dimensional, one-group diffusion theory with time-independent
cross sections. These restrictions allow meaningful mathematical
conclusions to be drawn in a simple setting. Experience has shown,
however, that these results extrapolate to the much more complex
configurations of realistic reactor models (i.e., multi-dimensional,
multi-group problems with feedbacks).

2. Methods

In this work we consider a simple model of one-group diffusion
theory with one group of delayed neutrons and no external
feedback,
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where all notation is standard (e.g., Bell and Glasstone, 1979). The
solution of these equations can be approximated using a backward
difference approximation to the time derivative. The finite differ-
ence approximation is associated with a sequence of finite time
steps which we call H = {hj}j=1,2,3,. . .. The time steps are related to
the discrete solution points by hj ¼ tj � tj�1. In methods with adap-
tive time step selection this sequence is not a priori known, but it is
determined as the solution evolves so that as few time steps are
taken as possible given some constraint on the approximation error.

The backward difference operator may be defined as an approx-
imation of the time derivative at point tj in terms of the sequence
of time steps H:

DHuðtjÞ ¼ uðtjÞ � uðtj � hjÞ
hj

� du
dt

jtj ð3Þ

where u is the state vector to Eqs. (1) and (2). i.e.

u ¼ /

C
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The approximation may be quantified at any given time point
by the local truncation error (LTE), which is defined as

suj ¼ du
dt

����
tj

� DHuðtjÞ ð5Þ

For smooth solutions, it is well-known that the leading term of
the truncation error is first-order in the time step and proportional
to the second time derivative of the function (e.g. LeVeque, 2007):

suj ¼ hj
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In reference (Hackemack and Pounders, 2014), a method was
introduced to adaptively select each time step hj so that the local
error, suj , accrued at each step satisfies some constraint. The local
truncation error at each step is approximated by the leading term
of Eq. (6),

~suj ¼ hj

2
d2u

dt2
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tj

� suj ð7Þ

There are two fundamental issues that arise in the implementa-
tion of this approach, each carrying implications for solution accu-
racy and stability:

1. The second derivative of the solution must be estimated in an
accurate and efficient manner;

2. A suitable constraint on the truncation error estimate must be
selected.

Each of these issues is considered in the following subsections.

2.1. Estimating the second derivative

Accurately estimating the second derivative of the solution is
critical for a good estimate of the truncation error, which in turn
determines the time step recommendation. Two finite difference
estimates are presently considered. In both cases it is assumed that
the only available solution values are those previously computed
by the backward-difference solution, and no additional operator
inversions should be required to obtain the second derivative esti-
mate. These restrictions are imposed to make the method immedi-
ately applicable for any code currently based on a backward
difference solver with minimal or no modification of the solver
itself.

The first estimate is based on Taylor expansions, or equivalently
a second-order polynomial interpolating the solution at tj�1; tj�2

and tj�3. The result is
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It is assumed that OðhjÞ is independent of j, so the notation O(H)
is used to generically represent the limiting behavior of neglected
terms with respect to time step sizes. The second derivative
approximation is obtained by neglecting first-order and higher
terms in the above expression. This approach will be called the
interpolating (INT) approximation.

It will later be shown that the interpolating estimate for the sec-
ond derivative can sometimes lead to oscillations in the time step
size. For this reason, an alternative formula has been developed
(Pounders and Boffie, 2015) which will be shown to be asymptot-
ically stable in all cases presently considered. This second estimate
is obtained by dual application of the backward difference
operator:

d2u

dt2
jtj � DHDHuðtj�1Þ ð9Þ

This will subsequently be called the nested difference (ND)
approach. The result in terms of discrete solution values can be
worked out in a straight forward manner, and with the assistance
of some Taylor expansions we may write
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In addition to a neglected first-order error, there is also a grid
bias term, eHðtjÞ, that is equal to

eHðtjÞ ¼ ð2hj � hj�1 � hj�2Þ
2hj�1

d2u

dt2
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As the three time steps in this estimate tend uniformly to zero,
eHðtjÞ tends to a constant, so the approximation is technically O(1).
The practical size of this bias, however, is roughly a function of
how rapidly the time steps change over three consecutive steps.
In the case of uniform time steps, the bias vanishes completely. If
hj � hj�1 � hj�2 then the bias should be small. We presently assume
that the latter is the case, and that sufficient programming logic
can be added to a code to ensure that this condition is satisfied.
Although the nested difference formulation lacks the asymptotic
consistency of the interpolating method in the case of a non-
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