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a b s t r a c t

This paper deals with the use of Reduced Order Methods for neutronics modelling. This approach is used
whether both accuracy and computational efficiency are required. A very popular category of these meth-
ods is based on projection approaches which use spatial basis and test functions for the development of
the reduced order model. The selection of the spatial basis and test functions used in the projection phase
is a crucial issue since it has an impact on the accuracy and the computational cost. In this work, different
methods for the creation of the spatial basis and the test functions are analysed. In particular, an Adjoint
Proper Orthogonal Decomposition (APOD) method is proposed combining the properties of the Proper
Orthogonal Decomposition and the use of the adjoint flux as test function in the neutronics framework.
The different methods are applied to create a spatial neutronics model for the ALFRED reactor. The sim-
ulation results show that the APOD method gives better results compared to the other methods (Modal
Method and standard Proper Orthogonal Decomposition) increasing the accuracy of the reduced order
model or minimizing the computational cost.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Different approaches can be found for the neutronics modelling
with different degrees of accuracy and related computational
effort, e.g., Monte Carlo method, deterministic transport theory,
diffusion approximation, Point Kinetics (PK). The selection of the
proper approach, according to the specific simulation and analysis
needs, is crucial. In this regard, the recent developments in the
simulation of nuclear reactors, along with the increased availability
of computational resources, do not cancel the importance of having
tools that provide useful insights at reasonable computational
time. The adoption of Reduced Order Methods (ROMs)
(Hesthaven et al., 2016; Rozza et al., 2008) can be suitable for this
aim, especially in the areas of process optimization, control or
uncertainty quantification (Chinesta et al., 2016; Gunzburger,
2002; Quarteroni et al., 2011). The interest in Reduced Order Meth-
ods for the simulation of complex systems in nuclear field is
increased in the last years, being applied to Monte Carlo methods
(Aufiero et al., 2016; Aufiero and Fratoni, 2017), to the determinis-
tic transport equations (Bang et al., 2015; Buchan et al., 2015), and
diffusion problems (Buchan et al., 2013; Gong et al., 2016; Lorenzi
et al., 2015; Sartori et al., 2014). The fields of application of ROMs
are not limited to the neutronics modelling but they are employed

also in sensitivity analysis and uncertainty quantification (Abdel-
Khalik et al., 2013; Bang et al., 2012a) and in thermal–hydraulic
context (Lorenzi et al., 2017, 2016). Different from the Surrogate
Response Surfaces (SRS) approach which are based on data fitting,
the methods employed in this work belong to the projection-based
family. These Computation Reduction Techniques (CRT) are aimed
at reducing the dimension of the algebraic system through the
projection onto a small subspace made by global basis functions
(Manzoni et al., 2012). As for the neutronics, this paradigm can
be applied separating the spatial and time dependence of the
neutron flux. The latter can be represented as a linear combination
of spatial basis functions calculated from an accurate neutronics
modelling weighted by time-dependent coefficients. The dynamic
behaviour of the flux is reduced to the study of these time-
dependent coefficients, and can be represented by a set of Ordinary
Differential Equations (ODEs). This set is obtained multiplying the
governing Partial Differential Equations (PDEs) with suitable test
functions, as in Galerkin methods. The selection of the spatial basis
and test functions is a crucial issue in the development of the
reduced order model. In particular, the aim is selecting the optimal
pair of spatial basis/test functions that maximizes the accuracy of
the model and minimizes the computational cost.

In this work, different approaches in the calculation of both the
spatial basis and the test functions are assessed in terms of
efficiency (considered as the ratio between accuracy and
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computational time). As for the spatial basis calculation, the classic
option is the Modal Method (MM) that employs as spatial basis the
eigenfunctions of the neutron diffusion PDEs calculated in a refer-
ence configuration (Stacey, 1969). The Modal Method provides a
‘‘general” spatial basis since it is related to the eigenvalue problem
of the system, referring to a reference configuration. On the other
hand, the natural alternative is to build an ad-hoc spatial basis tai-
lored on specific simulations. This is the case of the Proper Orthog-
onal Decomposition (POD) with the snapshot technique (Holmes
et al., 1996; Sirovich, 1987). In this case, some proper solutions
of the neutron diffusion PDEs are calculated (i.e., the ‘‘snapshots”)
and the most relevant modes are selected.

As for the test functions, the classic option is to use the same
functions that constitute the spatial basis as in a Galerkin projec-
tion. Nevertheless, the test functions can be different as in a
Petrov-Galerkin projection. In this work, an Adjoint Proper Orthog-
onal Decomposition approach has been developed to combine the
properties of the Proper Orthogonal Decomposition and the use of
the adjoint flux as test function in the neutronics framework.

The different approaches are applied to build a spatial neutron-
ics model of the Advanced Lead Fast Reactor European Demonstra-
tor (ALFRED) (Alemberti et al., 2014). The correct reproduction of
the reactivity insertion following a temperature or a Control Rod
(CR) change is the main quantity of interest in our case. In this
regard, the study of a Lead Fast Reactor represents an interesting
case study since in this nuclear system the impact of the coolant
density variation may act in different directions (i.e., with a posi-
tive or negative local coefficient) according to the core zone
involved. This spatial feature cannot be captured with a simplified
neutronics modelling (i.e., the Point Kinetics), and a reduced order
model can be the desired compromise between accuracy and com-
putational time.

The paper is organized as follows. In Section 2, the ALFRED plant
layout and the core configuration are briefly introduced. In Sec-
tion 3, the modelling approach employed for the spatial neutronics
model is presented with the description of the several phases
involved in the procedure, with a particular attention to the spatial
basis and test functions selection. The simulation results of the
ALFRED full core modelling are presented in Section 4, analysing
the optimal spatial basis/test functions pair and the performance
of the several methods in assessing the reactivity following a tem-
perature change and a CR movement. Finally, some conclusions,
perspectives and further developments are given in Section 5.

2. The Advanced Lead Fast Reactor European Demonstrator

The reference reactor in this work is the Advanced Lead-cooled
Fast Reactor European Demonstrator (ALFRED), developed within
the European FP7 LEADER Project. The Project efforts were mainly
focused on the resolution of the key issues that emerged in the pre-
vious Euratom ELSY Project (Cinotti et al., 2008) to reach a new ref-
erence reactor configuration, which was used to design a fully
representative scaled-down prototype. The demonstration ALFRED
unit is expected to be built at ICN (Institute de Cercetari Nucleare)
facility near Pitesti in southern Romania (Alemberti et al., 2013a).

ALFRED is a small-size (300 MWth) pool-type LFR. The current
configuration of its primary system (Alemberti et al., 2013b) is
depicted in Fig. 1. All themajor reactor primary systemcomponents,
including core, primary pumps, and Steam Generators (SGs), are
containedwithin the reactor vessel, being located in a large leadpool
inside the reactor tank. The coolant flow coming from the cold pool
enters the core and, havingpassed through the latter, is collected in a
volume (hot collector) to be distributed to eight parallel pipes and

List of symbols

Latin Symbols
A coefficient used in Eq. (11), cm�1

Cj concentration of the jth precursor group, cm�3

Dg neutron diffusion coefficient of the gth energy group, cm
E energy, MeV
Eg energy group threshold, eV
G number of energy group, �
hCR height of control rods, m
N number of employed functions in the spatial basis, �
Ns number of snapshots in the POD method, �
Np number of employed POD functions for the spatial basis,

�
n surface normal unit vector, �
ng
i time-dependent coefficient of the ith spatial function of

the neutron flux of the gth energy group, �
r spatial coordinate, cm
S surface of the spatial domain, cm2

T temperature, K
t time, s
vg neutron speed of the gth energy group, cm s�1

Greek Symbols
b total delayed neutron fraction, pcm
bj delayed neutron fraction of the jth precursor group, pcm
c albedo coefficient used in Eq. (12), �
kj decay constant of the jth precursor group, s�1

k�i ith eigenvalue, �
m average number of neutrons emitted per fission event,�
n g
i ith test function of the gth energy group, �

q reactivity, pcm
R generic macroscopic cross-section, cm�1

R g
a macroscopic absorption cross-section of the gth energy

group, cm�1

R g
f macroscopic fission cross-section of the gth energy

group, cm�1

Rg!
s macroscopic cross-section including scattering out of

the energy group g, cm�1

Rg!g0
s macroscopic group transfer cross-section from energy

group g to g0, cm�1

/g neutron flux of the gth energy group, cm�2 s�1

v g
d fraction of delayed neutrons generated in the gth energy

group, �
v g
p fraction of prompt neutrons generated in the gth energy

group, �
v g
t fraction of total neutrons generated in the gth energy

group, �
w g
i ith spatial eigenfunction of the neutron flux of the gth

energy group, cm�2 s�1

X spatial domain, cm3

Subscripts
0 reference value
a axial
f fuel
g energy group number
gz generic zone
r radial
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