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We present an improved algorithm for sampling the target velocity when simulating elastic scattering in
a Monte Carlo neutron transport code that correctly accounts for the energy dependence of the scattering
cross section. The algorithm samples the relative velocity directly, thereby avoiding a potentially ineffi-
cient rejection step based on the ratio of cross sections. We have shown that this algorithm requires only
one rejection step, whereas other methods of similar accuracy require two rejection steps. The method
was verified against stochastic and deterministic reference results for upscattering percentages in 23%U.
Simulations of a light water reactor pin cell problem demonstrate that using this algorithm results in a
3% or less penalty in performance when compared with an approximate method that is used in most pro-
duction Monte Carlo codes.
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1. Introduction

At sufficiently high incident neutron energies, the thermal motion
of target nuclei with which neutrons collide can be safely assumed to
be zero, implying that the double-differential scattering cross section
is independent of the temperature of the material. At epithermal
energies and below, however, it is important to account for the effect
of target thermal motion on both the integrated cross section and the
differential scattering cross section. The effect can be quantified by
writing the reaction rate as a function of the target velocity:

v,0(v)M(T, V), (1)

where V is the target velocity, v, = |[v — V|, v is the velocity of the
incident neutron in the laboratory system, T is the temperature of
the material, o(v;) is the 0 K cross section at relative velocity v,
and M(T,V) is the distribution of target velocities at temperature
T.If one integrates Eq. (1) over all possible target velocities, the Dop-
pler broadened reaction rate is found. One can then construct a mul-
tivariate probability distribution for V by dividing by this integral.

B vo(v)M(T,V)
TV) = 14V 0,0 (0 MT. V) .

Let us define C to be the inverse of the denominator of Eq. (2) so
that
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f(V) = Cora (v, )M(T V). (3)

The distribution in Eq. (3) represents the distribution of target
velocities, M(T,V), weighted by their expected contribution to
the reaction rate.

Several assumptions are often made in order to simplify Eq. (3)
into a form that can be sampled. The most common assumption is
that the distribution of target velocities is an isotropic Maxwell-
Boltzmann distribution for a monatomic ideal gas. This allows
one to separately treat the magnitude and direction of the target
velocity:

f(V7 22 (P) = CI/rO'(Ur)M(T, V)fl(u)f"(@)7 (4)

where V = |V|,2Vu=v-V,v=|v|, and ¢ is the azimuthal angle.
The Maxwell-Boltzmann distribution for the target speed is defined
as

4

M(T,V) = Ne: Fvie v (5)
where
B=\3r (6)

m is the mass of the target nuclide, and k is Boltzmann’s constant.
f'(p) is a uniform distribution over the interval [-1,1],
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where H is the Heaviside step function, and f”(¢) is a uniform dis-
tribution over the interval [0, 27,

f”((p) — H((p)+§0727t) (8)

Because ¢ can be sampled independently of V and , the prob-
lem is reduced to sampling the bivariate distribution in V and g,

(V. 1) = Cora (v )M(T,V)f (). 9)

Even with the monatomic ideal gas assumption, one still has to
account for the dependence of the cross section on the relative
velocity in Eq. (9). Thus, a further assumption is often made that
the cross section is constant over the range of plausible relative
velocities. This leads to a probability distribution in V and u that
can readily be sampled. However, this assumption can lead to sig-
nificant errors in both the differential scattering cross section
(Ouisloumen and Sanchez, 1991) and the calculated eigenvalue
(Lee et al., 2009).

Various methods have been proposed to account for the energy
dependence of the cross section when sampling target velocities in
Monte Carlo (MC) neutron transport simulations. A rejection
method, commonly referred to as the Doppler broadening rejection
correction (DBRC), was proposed by Rothenstein (1996) and later
popularized by Becker et al. (2009). Other authors have suggested
using S(a, B) tables (Dagan, 2005) and weight corrections (Mori and
Nagaya, 2009). The DBRC method has become nearly ubiquitous in
modern MC codes, having been implemented in TRIPOLI (Zoia
et al, 2013), MC21 (Trumbull and Fieno, 2013), Serpent
(Leppdnen et al., 2015), SuperMC (Wu et al.,, 2015), RMC (Liu
et al., 2016), and OpenMC (Walsh et al., 2014).

The DBRC method can lead to very low rejection efficiencies
near resonances, however, thereby increasing the execution time
of a simulation. For example, Trumbull and Fieno (2013) found a
14% decrease in the figure of merit when applying the DBRC
method to a light water reactor (LWR) pin cell problem. To address
this inefficiency, Walsh et al. (2014) developed an algorithm that
relies on directly sampling the relative velocity and then rejecting
it based on a function of the target velocity (rather than the other
way around as in the DBRC method). The method was imple-
mented in OpenMC where it demonstrated better computational
efficiency than did the DBRC method. In the present work, we
improve upon this algorithm. By changing variables to the target
energy and relative energy, we are able to directly sample the rel-
ative and target velocities and perform a single rejection step on .
This approach results in a simpler algorithm that has little runtime
overhead compared with that of the standard method of assuming
a constant cross section. In addition, to aid code developers who
may want to implement this method, we explicitly consider imple-
mentation details that were not discussed by Walsh et al. (2014).

2. Target velocity sampling methods

Before describing the improved target velocity sampling
method, we first consider how the existing methods are imple-
mented in an MC code. We begin with a complete description of
the traditional method whereby the cross section is assumed to
be independent of the incident neutron energy, which we call
the constant cross section (CXS) method.

2.1. Constant cross section

Substituting Eq. (5) into Eq. (9) results in

FV, ) = 47% V() B VeV f (). (10)

Assuming that the cross section is constant over all », further

implies that
40C 212
V)~ —= v, Ve PV (). 11

fv.w N f(w (11)

While ¢ and V can be sampled from terms appearing in Eq. (11),
the difficulty is that », depends on both V and i and is unbounded.
To get around this, we first introduce a lemma from the theory of
nonuniform random variate generation (Devroye, 1986).

Lemma 1. Any density function of the form f(X) = cg(X)y(X) where
g(x) is a density function and y(X) is [0, 1]-valued can be sampled by
drawing X' from g(x) and accepting it with probability (X)

One can deduce from geometric considerations that », cannot
attain a value greater than v+ V. Thus, multiplying and dividing
Eq. (11) by v+ V, we obtain

_4aC v,
CJmv+V
Changing variables to x = gV, defining y = fv, normalizing the

density function inside parentheses, and rearranging, one reaches
the following expression:

fV.p) (vB Ve ™ 1 PVe ™ )F (). (12)

S, 1) = Cexs Xﬁj:;, (%) %xze"‘2 + <ﬁ) 2x3e"‘2}f’(,u)

(13)

In Eq. (13), the term inside the brackets is a discrete mixture of
two densities that can be easily sampled. Thus, the sampling
algorithm for V and p proceeds as follows. First, sample u
uniformly from f'(u). Then, with probability 2/(v/Zy + 2) sample
the distribution 2x3e~*. Otherwise, sample the distribution
4//mx*e~*. Using Lemma 1, the resulting x and u values are
accepted with probability fv,/(x +y). If they are rejected, the pro-
cess is repeated. A complete algorithm is shown in Algorithm 1.
Note that each instance of ¢ refers to a pseudorandom number
drawn from a uniform distribution on [0, 1).

Algorithm 1. Target velocity sampling algorithm assuming
constant cross section

function sampPLEVELOCITYCXS(V)
y—pv
loop
He—2& -1
if & <2/(V/my +2) then
z — —log(&séq)
else
z — —logés — cos? (3¢4) log s
end if
X —z
if & < (y* +2 - 2xyp)/(y +x) then
Ve x/p
return V, u
end if
end loop
end function

2.2. Doppler broadening rejection correction

As noted earlier, assuming that the elastic scattering cross sec-
tion is constant over energies close to that of the incident neutron
is not reasonable when scattering resonances are present. To
account for the shape of the cross section on the sampled distribu-
tion of target velocities, we return to Eq. (10) and proceed as we
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