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a b s t r a c t

There is an increasing interest in computational reactor safety analysis to systematically replace the con-
servative calculations by best estimate calculations augmented by quantitative uncertainty analysis
methods. This has been necessitated by recent regulatory requirements that have permitted the use of
such methods in reactor safety analysis. Stochastic uncertainty quantification methods have shown great
promise as they are better suited to capture the complexities in real engineering problems. With
advances in computational capabilities in recent times, these methods when utilized would provide dis-
tributions of safety important parameters computed by thermal hydraulic codes. In this study, a transient
is simulated with a best estimate thermal hydraulic code, CATHENA. Stochastic uncertainty quantifica-
tion and sensitivity analysis were performed using the OPENCOSSAN software which is based on the
Monte Carlo method. The uncertainty and sensitivity analyses results were then utilized to update the
dynamic Fault Semantic Network for safety verification. The effect of uncertainty in two input parameters
(initial temperature and pressure) was investigated by analyzing the probability distribution of two out-
put parameters. The first four moments of the output pressure and fuel pin temperature were computed
and analyzed. The uncertainty in output pressure was 0.087% and 0.048% was found for the fuel pin tem-
perature. These results are expected to provide insight for safety analyses by their utilization in updating
the dynamic FSN.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In Nuclear Power Plants (NPPs), various computational tools are
used to perform safety analysis and verification. These tools are
designed to simulate transients and in some cases, accident scenar-
ios for various systems in a NPP. For example, for thermal hydrau-
lics; RELAP, STAR CCM+ and CATHENA are used. For neutronics;
MCNP, DRAGON and WIMS are used. The codes mentioned above
are used by regulators, operating organizations and researchers
to perform safety assessment and verification of NPPs. Most of
the analyses performed using the above tools have been based
on conservative assumptions. These assumptions are selected such
that sufficient margins to safety are attained with compromises on
efficiency in certain instances. Recent regulatory requirements
have permitted the use of these best estimate codes supported
by uncertainty quantification (BEPU) (10 CFR 50.46; Glaeser, 2008).

1.1. Uncertainty quantification in NPP simulations

Uncertainty quantification (UQ) is an important exercise that
needs to be conducted as part of NPP simulations. This is due to
the fact that uncertainties arise from various sources during the
modeling and simulation process, these sources include: uncer-
tainties in the input parameters used, model uncertainties arising
from assumptions made in modeling a physical system as well as
the type of numerical methods used in solving the problem. UQ
basically asks the question, what range of outputs will be observed
given the range of uncertain input parameter values? The UQ pro-
cess therefore involves the determination of the range and proba-
bility of the outputs or the output probability density function
(PDF). UQ methods can be broadly classified into the following:
a) sampling based methods, b) Code Surrogates and c) Ad joint
methods. Both sampling based methods and code surrogates can
be described as computer codes in black box mode. Examples of
these category include regression analysis and Monte Carlo meth-
ods. Code surrogates are simplified mathematical models of inputs
and outputs, examples include; Unscented Transform (UT), Alter-
nating Conditional Expectation (ACE) and Gaussian Process Model
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(GPM). In regression analysis, input/output relationships are esti-
mated from datasets (Fynan, 2014).

Although there are several sources of uncertainty as noted
above, the focus of this study is input parameter uncertainty prop-
agation through the code. The models implemented in the code are
assumed to be good enough and the effect of uncertainty in
selected input parameters is quantified by observing their effect
on output parameters.

1.2. Stochastic methods for uncertainty quantification

The use of stochastic methods to perform UQ has gained signif-
icant interest in recent times. These methods include Bayes and
Laplace’s subjective interpretation of probability as a state of infor-
mation and their wide acceptance relative to other methods is due
to the well-developed concept of probability. In the stochastic
methods, uncertainties are represented mathematically by random
variables and by suitable probability distributions. The stochastic
analysis allows for UQ and its propagation to the outputs, which
may be mathematically perceived as random variables adequately
described by their probability distribution. UQ yields certain bene-
fits including assessing the reliability and variability of outputs as
well as providing useful information that would enhance the
design process and increase the fidelity of the prediction. Closely
related to UQ is sensitivity analysis which involves mainly uncov-
ering the quantities responsible for the variability of the outputs.
The uncertainties that may be due to the lack of knowledge would
be reducible by obtaining more information on the quantities caus-
ing the variability in the output. Irreducible uncertainties must be
factored in the design such that the safety of the system is not
compromised (Patelli et al., 2012). Sensitivity measures such as
the Spearman rank correlation is used and it provides the variation
of the output in terms of standard deviations when the input
uncertainties varies by one standard deviation (Glaeser, 2008).

1.3. Modeling uncertainties

Probability can be used to effectively model uncertainties. In
this way, scalar values of inputs and outputs can be represented
by random variables. The uncertainty modeling approach used in
the software OpenCOSSAN is described in this section. Details of
the software implementation are given in the methodology
section.

Various distributions are used to specify a random variable,
they include normal, log-normal and uniform. If experimental data
is available, these maybe used to construct the set of random vari-
ables. A maximum likelihood method is then used to determine
parameters that result in an optimal fit of the experimental data
by a particular distribution. The maximum likelihood method is
an efficient tool that obtains estimators of the distribution param-
eter having optimal statistical properties (Myung, 2003).

An uncorrelated multivariate distribution is obtained by trans-
formation of the multiple correlated distribution. This is achieved
in the standard normal space which is a multi-dimensional random
variable space with zero mean, a unit standard deviation and Gaus-
sian marginal probability density functions. This step is necessi-
tated by the fact that pseudo-random number generators usually
generate independent samples.

Stochastic processes such as Monte Carlo (MC) and random
fields can be applied to model parameters which vary randomly
and are functionally dependent in a multi-dimensional continuous
space (Schenk and Schuëller, 2005; Vanmarcke, 1998). If the
stochastic process is Gaussian, then it is adequately defined by
the mean function and the covariance function. The covariance
function may be considered the mutual influence of the process
at two different spatial-coordinates or time-instants (Patelli

et al., 2012). The MC method is applied in the OpenCOSSAN soft-
ware and used in this study to model uncertainties of input param-
eters used to simulate a transient by CATHENA.

1.4. Sensitivity analysis

Sensitivity analysis is performed in order to estimate the effect
of uncertain input parameters on an output parameter. The results
from such analyses are useful in providing information on areas
where designs can be changed in order to improve performance.
It identifies variables that affect model results the most (Saltelli
et al., 2000; Patelli et al., 2010) and can be used for model calibra-
tion and validation.

Local sensitivity analysis, screening methods and global sensi-
tivity analysis are the major types of sensitivity analysis used.
The computationally intensive nature of global sensitivity analysis
makes the local sensitivity analysis the most utilized method in
practical applications (Saltelli, 2002). In local sensitivity analysis,
the response of a model is obtained by varying the inputs one-
at-a time while holding the other inputs fixed. Global sensitivity
analysis considers the entire range of variation of input parameters
with the aim of accounting for the entire output uncertainty
according to the different sources of uncertainties in the model
inputs (Saltelli et al., 2000).

In this study, a methodology is proposed for performing uncer-
tainty and sensitivity analyses and subsequently utilizing these
results for safety verification. The application of uncertainty quan-
tification results for safety verification is demonstrated in this
study using the Fault Semantic Network (FSN).

1.5. Fault semantic network

FSN is an application of Semantic Networks to represent various
faults, their causes as well as consequences in a system. The nodes
in FSN represent various faults/causes/process variables and the
link between the nodes represent the dependencies between them.
Directed arcs are used to indicate the connections between the
nodes. For instance, two nodes randomly selected are linked by a
directed arc which shows how a plant state may lead to another
state during the occurrence of a particular fault. The strength of
connections between nodes depend on the type of interaction that
exist between them. FSN can be used for performing fault propaga-
tion analysis as well as safety verification. In applying FSN for
safety verification, a database comprising various faults, process
variables, components and fault consequences is created. This
database is also referred to as the static FSN. The dynamic FSN is
then developed by updating the data in the static FSN with the real
time state of the plant. These plant states can be obtained from
simulation as well as experimental results. The static FSN also
comprises a rule base which describes in detail various plant states
and their implication on plant safety. At any given time and under
any operational condition, safety verification can be undertaken by
providing as input to the FSN results from experiments or simula-
tions. Based on the rule base usually developed by soliciting expert
opinion, the FSN can provide feedback regarding the safety or
otherwise of the plant. This procedure constitutes the dynamic
updating of FSN.

1.6. Risk management review

(Bjerga and Aven, 2015) in their study defined adaptive risk
management as adapting actions by responsible individuals and
systems in a changing environment. The study considered a case
in the oil and gas industry and concluded essentially that adaptive
risk management produces valuable insights during a transient or
an accident scenario even in cases of deep uncertainty. They also
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