Annals of Nuclear Energy 113 (2018) 506-518

Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier.com/locate/anucene ==

Multigroup Monte Carlo on GPUs: Comparison of history- and N

event-based algorithms ™

Check for
updates

Steven P. Hamilton ™!, Stuart R. Slattery %, Thomas M. Evans '

Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831 USA

ARTICLE INFO ABSTRACT

Article history:

Received 9 August 2017

Received in revised form 9 November 2017
Accepted 17 November 2017

This paper presents an investigation of the performance of different multigroup Monte Carlo transport
algorithms on GPUs with a discussion of both history-based and event-based approaches. Several algo-
rithmic improvements are introduced for both approaches. By modifying the history-based algorithm
that is traditionally favored in CPU-based MC codes to occasionally filter out dead particles to reduce

thread divergence, performance exceeds that of either the pure history-based or event-based approaches.

The impacts of several algorithmic choices are discussed, including performance studies on Kepler and

Key ‘.’VO.rdS: § Pascal generation NVIDIA GPUs for fixed source and eigenvalue calculations. Single-device performance
Radiation transport R . .

Monte Carlo equivalent to 20-40 CPU cores on the K40 GPU and 60-80 CPU cores on the P100 GPU is achieved. In
GPU addition, nearly perfect multi-device parallel weak scaling is demonstrated on more than 16,000 nodes

of the Titan supercomputer.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Effective design and analysis of many nuclear systems rely on
the ability to accurately solve the radiation transport equation.
Monte Carlo (MC) methods offer the most accurate radiation trans-
port solutions, but they are subject to uncertainty due to persistent
stochastic noise as a result of random sampling. Reducing this
noise can be accomplished by increasing the number of simulated
particle histories, but achieving the precision required for many
applications comes at a substantial computational cost.

Recent trends in high performance computing favor vectorized,
single-instruction multiple-data (SIMD) or single-instruction
multiple-thread (SIMT) architectures such as GPUs or the Intel
Xeon Phi processors. These processors offer performance at a sig-
nificantly lower energy cost per floating point operation than tra-
ditional CPUs. The challenge of performing MC transport on a

* This manuscript has been authored by UT-Battelle, LLC, under contract DE-
AC05-000R22725 with the U.S. Department of Energy. The United States Govern-
ment retains and the publisher, by accepting the article for publication, acknowl-
edges that the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government purposes.

* Corresponding author.

E-mail addresses: hamiltonsp@ornl.gov (S.P. Hamilton), slatterysr@ornl.gov
(S.R. Slattery), evanstm@ornl.gov (T.M. Evans).

! HPC Methods and Applications Team, Reactor and Nuclear Systems Division.

2 Computational Engineering and Energy Sciences Group, Computational Sciences
and Engineering Division.

https://doi.org/10.1016/j.anucene.2017.11.032
0306-4549/© 2017 Elsevier Ltd. All rights reserved.

vectorized computing architecture is not new: the vector super-
computers that flourished in the 1980’s led to the introduction of
event-based MC (Brown and Martin, 1984). In a traditional MC
algorithm (referred to in this paper as “history-based”), individual
particle histories are simulated from the time they are created
until their termination. On the other hand, the event-based
approach processes groups of particles in batches based on the
next event that the particles will undergo. Thus, a collection of par-
ticles undergoing geometric tracking will be processed together as
a group, and particles scheduled to collide will be processed
together. Processing particles together in this fashion allows the
algorithm to exploit the vectorization capabilities of the computing
architecture. Most recent work to adapt MC transport to GPUs has
focused on event-based algorithms (Bergmann and Vujic, 2015; Xu,
2015; Ozog et al., 2015). Modern architectures, however, are far
more versatile than the vector computers of decades past. While
reducing thread divergence is still an important consideration for
many GPU algorithms, it is not clear that such a drastic change
from traditional CPU algorithms is necessary. Some evidence sug-
gests that low-level thread divergence resulting from short-lived
branching may not be detrimental to performance if the impact
on memory bandwidth is taken into account (Scudiero, 2014).
This paper considers the solution of the multigroup form of the
transport equation on GPUs. While many applications are focused
only on continuous-energy transport, use of the simpler multi-
group physics allows for algorithmic details to be investigated
more thoroughly. In addition, while many performance issues will


http://crossmark.crossref.org/dialog/?doi=10.1016/j.anucene.2017.11.032&domain=pdf
https://doi.org/10.1016/j.anucene.2017.11.032
mailto:hamiltonsp@ornl.gov
mailto:slatterysr@ornl.gov
mailto:evanstm@ornl.gov
https://doi.org/10.1016/j.anucene.2017.11.032
http://www.sciencedirect.com/science/journal/03064549
http://www.elsevier.com/locate/anucene

S.P. Hamilton et al./Annals of Nuclear Energy 113 (2018) 506-518 507

be different in continuous-energy transport, there are many com-
monalities between the approaches that naturally extend from
multigroup to continuous energy. Where possible, features likely
to carry over to the continuous-energy problem are identified. Fur-
thermore, the multigroup MC approach continues to be used in
codes such as Shift (Pandya et al., 2016) and the KENO-VI module
of the SCALE package (SCALE, 2011). In addition, methods such as
the implicit MC approach for nonlinear radiative transfer are exclu-
sively formulated using the multigroup (multifrequency) approach
(Fleck and Cummings, 1971).

This paper provides a comparison of traditional history-based
and event-based MC transport algorithms on GPUs. The implemen-
tation details of each method are thoroughly described, including
several new algorithmic developments for each approach. The
remainder of this paper is organized as follows. Section 2 provides
background on the Profugus code used in this work, as well as the
GPU architecture. Section 3 describes the traditional history-based
transport algorithm and its implementation for GPUs, including
ideas for reducing thread divergence. Section 4 describes the
implementation of an event-based algorithm, with particular focus
on approaches to enhance performance through improved sorting
and source generation. Section 5 provides numerical results com-
paring features of the history-based and event-based formulations,
including scaling studies on the Titan supercomputer at the Oak
Ridge Leadership Computing Facility (Oak Ridge Leadership
Computing Facility, 2016). Concluding remarks and ideas for future
work are given in Section 6.

2. Profugus GPU implementation

The studies in this manuscript were performed using the Profu-
gus MC code (Profugus). Profugus is an open-source multigroup MC
solver developed at Oak Ridge National Laboratory. It is designed to
mimic the algorithms and design of the Shift MC code (Pandya et al.,
2016). It can solve both fixed source and criticality (k-eigenvalue)
problems. While Shift is designed to be a production-level analysis
tool, the primary purpose of Profugus is algorithmic research.
Therefore, Profugus only implements a subset of the functionality
in Shift. For example, Shift uses either multigroup or continuous-
energy nuclear data, while Profugus only implements the multi-
group approach. Shift supports a wide range of geometric capabili-
ties, while Profugus is limited to either a Cartesian mesh or the
reactor toolkit (RTK) geometry which is optimized for modeling of
pressurized water reactors (Pandya et al., 2016). Finally, Profugus
only offers a small number of tally options, specifically a total flux
cell tally and tallies necessary for performing criticality calcula-
tions. Shift, on the other hand, provides a wide variety of tally
options. In all calculations in this document, the standard variance
reduction technique of implicit capture (also known as absorption
suppression or survival biasing), combined with Russian roulette, is
employed. The Russian roulette weight cutoff is set to 0.25, and
the survival weight is set to 0.5—the same settings used in the Shift
transport code (Pandya et al., 2016).

A brief overview of the NVIDIA GPU architecture is provided,
along with corresponding software considerations of the CUDA
programming language (CUDA C programming guide, 2015). NVI-
DIA GPUs contain several independent streaming multiprocessors.
In this report, three GPUs will be considered: the K20X and K40
devices of the Kepler generation and the P100 of the newer Pascal
generation. The K20X and K40 GPUs contain 14 and 15 indepen-
dent multiprocessors, respectively, while the P100 contains 56.
Each multiprocessor can execute numerous threads simultane-
ously. These threads are grouped into collections of thread blocks
that are assigned to run concurrently on the same multiprocessor.

Within a thread block, the threads are grouped into sets of 32
threads known as warps which constitute the vectorization unit
of the GPU. The 32 threads in a warp execute instructions together
in lockstep: any instruction that must be executed by any thread in
a warp must be executed by every thread in the warp. When
branching instructions are encountered, the entire warp will exe-
cute each branch that is taken by any thread within the warp.
When different threads within a warp take different code branches,
thread divergence occurs. During execution of branches for which
a given thread is inactive, the thread is predicated—that is, it will
still execute all instructions, but the results of these calculations
will be discarded. Thus, branching statements do not impact the
correctness of the results computed by individual threads, but they
may have a significant impact on the performance of the code.

Several different types of memory are present on GPUs. Data
allocated in global memory are accessible by all threads on all mul-
tiprocessors on the GPU. Global memory represents the largest
component of GPU memory, but it is also subject to the highest
latency and lowest bandwidth. Global memory accesses can take
advantage of some data caching, although the cache structure is
much less sophisticated than a typical CPU cache. Shared memory
is visible to all threads within a single thread block. Each thread
block has its own portion of shared memory, and data allocated
to shared memory in one thread block is not visible from any other
thread block. Shared memory has extremely low latency and high
bandwidth but is very limited in size, typically 48 kB distributed
among all of the thread blocks executing on a given multiproces-
sor. Texture memory, or texture fetching, does not represent a dif-
ferent memory location; rather, it points to alternate hardware for
fetching data from global memory. Texture fetches can take advan-
tage of a richer cache hierarchy than standard global memory
accesses, but only read-only access can be achieved.

The GPU capabilities described in this paper were implemented
using the CUDA programming language, which was introduced by
NVIDIA to facilitate the use of GPUs for general-purpose program-
ming. CUDA uses the same syntax as C/C++, with additional con-
structs specifically targeted at programming for the GPU (a
Fortran-compatible version of CUDA is also available). Special func-
tions designed to execute on the GPU are known as kernels, and the
process of calling a kernel from the CPU to execute on the GPU is
known as a kernel launch. Due to limitations in the architecture, a
number of C++ features (e.g., inheritance) are not available or they
incur a significant performance penalty (e.g., dynamic memory
allocation) within on-device code. For this reason, to adapt an
existing C/C++ code to run on the GPU, it is generally necessary
to rewrite a significant portion of the code base. Some other pro-
gramming models are available for writing software for NVIDIA
GPUs, including OpenACC (The OpenACC application
programming interface, 2015), Kokkos (Edwards et al., 2015), and
RAJA (Hornung and Keasler, 2014). While these models often sim-
plify the syntax of writing GPU code, they are generally imple-
mented by converting the user’s code into CUDA, so they do not
remove any of CUDA’s limitations. Furthermore, because these
models are designed to offer interoperability between different
computing architectures, some features of the CUDA language
are not available. For this reason, the CUDA language was used
directly in this GPU implementation.

Support for multiple GPUs is achieved using domain replica-
tion—geometry and cross section data are stored independently
on each device. Communication between devices is achieved by
assigning one MPI task per GPU, which enables the use of multiple
devices on a single compute node as well as devices located on dif-
ferent compute nodes. For eigenvalue problems, a version of the
parallel fission bank algorithm from Romano and Forget (2012) is
used with slight modifications as described in Pandya et al. (2016).



Download English Version:

https://daneshyari.com/en/article/8067235

Download Persian Version:

https://daneshyari.com/article/8067235

Daneshyari.com


https://daneshyari.com/en/article/8067235
https://daneshyari.com/article/8067235
https://daneshyari.com

