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a b s t r a c t

Eigenvalue searches for multiplying systems emerge in several applications, encompassing the determi-
nation of the so-called alpha eigenvalues associated to the asymptotic reactor period and the adjustment
of albedo boundary conditions or buckling in assembly calculations. Such problems are usually formu-
lated by introducing a free parameter into a standard power iteration, and finding the value of the param-
eter that makes the system exactly critical. The corresponding parameter is supposed to converge to the
sought eigenvalue. In this paper we show that the search for the critical value of the parameter might fail
to converge for deep sub-critical systems: in this case, the search algorithm may undergo a series of per-
iod doubling bifurcations (leading to a multiplicity of solutions) instead of converging to a fixed point, or
it may even crash. This anomalous behaviour is explained in terms of the mathematical structure of the
search algorithm, which is shown to be closely related to the well-known logistic map for a few relevant
applications illustrated in the context of the rod model. The impact of these findings for real-life applica-
tions is discussed, and possible remedies are finally suggested.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

A large class of problems emerging in nuclear reactor physics
involve searching for the stationary state of a multiplying system
by adjusting a control parameter (Bell and Glasstone, 1970;
Azmy and Sartori, 2010). Examples include for instance the deter-
mination of the value of boron dilution or the control rod position
that make the reactor exactly critical, all the other system param-
eters being kept constant. Similar searches are quite common also
outside the realm of reactor control. Consider, for instance, the
determination of the equilibrium temperature profile of reactor
cores with thermal–hydraulics feedback (Cacuci, 1993; March-
Leuba et al., 1984). The stationary solution of the coupled problem
may be sought by alternatively iterating neutron transport and
thermal–hydraulics solvers until they converge to a fixed point.
There are no external control parameters in this case, but the tem-
perature field may be seen to play the role of an adjustable param-
eter, whose shape at convergence makes the reactor critical. Other
examples of critical parameter searches with iterative solution
schemes arise in the context of the determination of the albedo
at the core boundaries (Cho et al., 2009; Yun and Cho, 2010) or
in reactor period calculations (Azmy and Sartori, 2010; Zoia
et al., 2015; Nauchi, 2014).

Although inspired by their real-life counterparts (see, e.g.,
(Cacuci, 1993; March-Leuba et al., 1984)), for the purpose of this
paper we will regard critical parameter searches as mathematical
problems: we will assume that the reactor state can be described
by the k-eigenvalue form of the linear Boltzmann equation (Goad
and Johnston, 1959; Lewis and Miller, 1984; Lux and Koblinger,
1991), with a single free control parameter p. The presence of mul-
tiple control parameters, and the possible interactions between
each other due to coupling mechanisms, will be neglected. For
any value of p, there will be a spectrum rp½k� of eigenvalues asso-
ciated to the Boltzmann equation: starting from an arbitrary initial
condition, the reactor will ultimately relax to its fundamental
mode uk0ðpÞ, with associated fundamental eigenvalue k0ðpÞ. Both
uk0ðpÞ and k0ðpÞ depend on the control parameter p. Formally
speaking, the critical solution is usually sought by introducing iter-
ative update schemes for the control parameter: the k-eigenvalue
equation is solved for the fundamental eigenvalue k0ðpÞ for a given
p (for instance by power iteration), then p is progressively adjusted
based on the value k0ðpÞ. If such a scheme ultimately converges to a
fixed point, with corresponding fundamental eigenvalue
k0ðpÞ ¼ k0ðpcÞ ¼ 1, the resulting value of the control parameter is
the sought solution p ¼ pc that makes the system exactly critical.

One may be tempted to assume that such iterative schemes
always converge to the fixed point p ¼ pc; k0ðpcÞ ¼ 1f g, assuming
of course that it exists. Clearly, though, if the initial conditions of
the iterative scheme are poorly chosen, the search may diverge
or enter non-physical regions of the search space. Under these
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conditions, the fixed point pc is never attained. However, even if a
solution exists and suitable initial conditions are selected, the iter-
ative scheme may still fail to converge.

In the context of reactor physics, the failure of the convergence
to a fixed point has been first documented for the evolution of the
neutron population in the presence of thermal–hydraulics feed-
back: in a series of pioneering works, the emergence of a chaotic
behaviour via period-doubling bifurcations has been theoretically
and numerically investigated, especially in relation to boiling
water reactors (Cacuci, 1993; March-Leuba et al., 1984).

This phenomenon has been repeatedly observed and is widely
documented also in the literature related to the numerical deter-
mination of the asymptotic reactor period (the so-called a� k iter-
ation). For instance, simple iterative schemes for a eigenvalue
search lead to abnormal code termination in sub-critical configura-
tions (Hill, 1983). The same issue was later reported by many
authors, and effective solutions have been proposed by resorting
to operator or eigenvalue shifting techniques (Yamamoto and
Miyoshi, 2003; Ye et al., 2006; Zoia et al., 2014, 2015).

It is perhaps worth observing that critical parameter searches
are essentially root-finding problems for numerical functions.
Thus, the whole apparatus of numerical root-finding methods
can be in principle brought to bear in order to determine the value
of the parameter p that makes the reactor critical. Many root-
finding algorithms do guarantee convergence under weak assump-
tions. For instance, the class of bracketing methods (such as the
bisection method or the regula falsi method) guarantee conver-
gence if the initial conditions are suitably chosen (Traub, 1964;
Householder, 1970; Ortega and Rheinboldt, 1970). However, it is
not straightforward to apply bracketing methods to stochastic
root-finding problems (Pasupathy and Kim, 2011).

The purpose of this paper is to provide insight into the reasons
why some iterative schemes for criticality searches may fail to con-
verge to the fixed-point solution, even when the latter exists and
even when the search is seeded with appropriate initial conditions.
While this paper addresses these questions in the framework of
deterministic numerical solvers for the fundamental eigenvalue
k0ðpÞ and for the adjustment of the control parameter p, we actu-
ally also have in mind possible applications to eigenvalue searches
with Monte Carlo codes. In this case, k0ðpÞ is determined by the
stochastic implementation of power iteration (by running a large
number of cycles corresponding to successive neutron generations)
and p is updated at the end of each cycle. In view of this consider-
ation, we will mostly focus on update rules for p simple enough to
depend on the value of k0ðpÞ at the current cycle, without the need
of storing in memory the past cycles. For the same reason, we will
not consider methods based on derivatives of k0ðpÞ, which cannot
be straightforwardly estimated in Monte Carlo schemes.

This paper is organized as follows. In Section 2 we begin by
introducing the required notation and providing the general math-
ematical setup for eigenvalue searches. In particular, we will show
that these problems can be formally recast into a discrete dynam-
ical system, whose equilibrium point is the sought solution. In Sec-
tion 3 we will provide a few numerical illustrations of eigenvalue
searches in the context of the rod model, a simple system involving
mono-energetic neutron transport. A broad class of eigenvalue
problems associated to the rod model will be examined. We will
show in particular under which conditions these searches may fail
to converge, and display instead an oscillatory or even chaotic
behaviour. Then, in Section 4 we will show that the mechanisms
that lead to the failure of the eigenvalue search have a universal
character (whose origins will be elucidated) and might thus more
broadly emerge in real-life applications. Some remedies especially
conceived in order to regularize the eigenvalue searches and possi-
bly suppress the route to instabilities and chaos will be proposed

and numerically tested in Section 5. Conclusions will be finally
drawn in Section 6.

2. Definitions and notation

To fix the ideas, let us assume that the state of the reactor can
be characterized in terms of the k-eigenvalue form of the linear
Boltzmann equation, namely,

Luk ¼ 1
kFuk;

B:C:onuk

(
ð1Þ

where uk ¼ ukðx;X; EÞ are the eigenfunctions of the angular neu-
tron flux and k the associated eigenvalues,

L ¼ X � rx þ Rtðx; EÞ �
Z

dX0
Z

dE0Rsðx; E0Þf sðX0; E0 ! X; EÞ ð2Þ

is the net disappearance operator, with Rt the total cross section, Rs

the scattering cross section, and f s the scattering kernel, and

F ¼ vf ðEÞ
4p

Z
dX0

Z
dE0mf ðE0ÞRf ðx; E0Þ ð3Þ

is the fission operator, with Rf the fission cross section, mf the aver-
age number of fission neutrons, and vf the fission spectrum (Bell
and Glasstone, 1970). Boundary conditions (B. C.) on uk must be
also assigned for Eq. (1). Although the existence of a dominant dis-
crete eigenvalue k0 with real part larger than those of all other
eigenvalues in the spectrum r½k� and with non-negative associate
eigenfunction uk0

has not been proven for arbitrary operators L
and F , domain shapes and boundary conditions, under rather mild
assumptions it is reasonable to assume that the fundamental eigen-

pair uk0
; k0

n o
exists (Lewis and Miller, 1984; Lux and Koblinger,

1991). This means that the neutron population in the core, starting
from arbitrary initial conditions, will eventually relax to a phase
space distribution proportional to uk0

, and k0 will asymptotically
yield the ratio between population sizes at two successive genera-
tions. If k0 > 1 the population will diverge; if k0 < 1 the population
will shrink; and if k0 ¼ 1 the population will stay constant, which
precisely defines the critical state.

In many practical applications, one is only interested in deter-
mining the asymptotic behaviour of the core, the precise shape
of the spectrum r½k� being of lesser importance. In this case, a
widely adopted technique for assessing the dominant eigenpair

uk0
; k0

n o
of Eq. (1) is the power iteration (Lewis and Miller,

1984; Lux and Koblinger, 1991). This method requires an ansatz

uð0Þ
k for the angular flux, and eventually converges to uk0

; k0
n o

by iterated application of the update rule

uðnþ1Þ
k ¼ 1

kðnÞ
L�1FuðnÞ

k ; ð4Þ

with kðnÞ ¼ juðnÞ
k j=juðn�1Þ

k j and kð0Þ ¼ 1, and the same boundary

conditions as in Eq. (1). For sufficiently large n, the eigenvalue kðnÞ

converges to k0 as kðnÞ ’ k0 þ c k1
k0

� �n
þ � � �, where c is a problem-

dependent constant and k1 is the eigenvalue corresponding to the

first excited eigenmode. Correspondingly, the function uðnÞ
k con-

verges to the fundamental eigenmode uk0
. The power iteration

scheme given in Eq. (4) can be solved by either deterministic or
Monte Carlo methods (Lewis and Miller, 1984; Lux and Koblinger,
1991).
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