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a b s t r a c t

The cumulative migration method (CMM) for computing lattice-homogenized multi-group neutron dif-
fusion coefficients and transport cross sections from Monte Carlo is proposed in this paper. CMM is
demonstrated to be both rigorous and computationally efficient, while eliminating inaccuracies inherent
in commonly-applied transport approximations. In the limit of a homogeneous hydrogen slab, the new
method is shown to be equivalent to the long-used, and only-recently-published CASMO transport cor-
rection method employed for production LWR analysis. Results demonstrate that CMM can produce rig-
orous few-group assembly-homogenized diffusion coefficients directly from heterogeneous Monte Carlo
lattice tallies—without requiring the intermediate step of tallying of fine-group cross section data com-
monly required for P1 or B1 calculations of diffusion coefficients. Comparisons with several common dif-
fusion coefficient approximations are made for both simple homogeneous media and fully heterogeneous
lattices. CMM is demonstrated to produce 2-group diffusion data for the BEAVRS PWR lattices, as well as
11-group directional-dependent diffusion coefficients for the TREAT graphite/fuel lattices. Core flux dis-
tributions and eigenvalues computed using CMM diffusion coefficients are demonstrated to be more
accurate than those obtained with traditional methods for approximating diffusion coefficients.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Many deterministic nuclear reactor calculations utilize
transport-corrected-P0 transport or diffusion theory to model neu-
tron transport within fuel assemblies and adjoining reflecting
regions. The accuracy of such core models is inherently tied to
approximations made in obtaining multi-group transport cross
sections or diffusion coefficients. While classic reactor physics
textbooks (George et al., 1979; Lamarsh, 1966) offer insights and
plausible arguments for computing transport cross sections and
diffusion coefficients, there appears to be no rigorous theory for,
nor quantification of errors introduced by, these approximations.
Consequently, the computational accuracy of both heterogeneous
(e.g. explicit fuel pin) and nodal (e.g. homogenized fuel assemblies)
core calculations is often seriously compromised by inaccurate
transport approximations, and little guidance is available in the lit-
erature to assist code developers and analysts in choosing the
appropriate transport approximation.

1.1. Background

The generation of multi-group cross section data for LWR anal-
ysis usually starts by identifying some characteristic ‘‘lattice”—be it
a pin-cell, a fuel assembly, or a collection of fuel assemblies. For
each such lattice, a very-fine-group transport calculation (e.g.,
50–10,000 groups) is performed to obtain the neutron flux and
reaction rate distributions within the lattice. Unless this transport
calculation explicitly models anisotropic scattering, an approxima-
tion for transport-corrected-P0 cross sections for each nuclide must
be introduced before the multi-group lattice transport calculation
can be performed.

In addition, lattice reaction rates and fluxes are used to compute
energy-condensed and/or spatially-homogenized transport cross
sections (or diffusion coefficients) for use in downstream multi-
group (e.g., 2–100 groups) core calculations. Here, additional
approximations are required to compute the appropriate transport
cross section that preserves some selected characteristic of the lat-
tice calculation.

All production lattice physics codes (Newton and Hutton, 2002;
Huria et al., 1994; Marleau et al., 1994; Villarino, 1992) make such
approximations, often without substantial justification. Moreover,
the most useful of these approximations are often considered to
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be proprietary, and the literature remains largely silent on useful
methods. One example might be that of the transport-
corrected-P0 methods that have been employed in CASMO for
more than 40 years. Only recently has Herman (Herman et al.,
6052) published details of the method used in CASMO to generate
transport-corrected-P0 cross sections for H in LWR lattices. Herman
was able to compute CASMO’s ‘‘exact” transport cross section that
matched continuous-energy Monte Carlo (MC) neutron leakages
(integrated into 70 fine energy groups) for a slab of pure hydrogen.
This transport correction is markedly different from that computed
using the ‘‘micro-balance” argument (Stamm’ler and Abbate, 1983)
which produces the classic ‘‘out-scatter” approximation—with its
transport-to-total ratio of 1/3 for purely isotropic center-of-mass
neutron scattering with 1H in a free gas model. CASMO developers
recognized long ago that this definition of transport cross section
produced excellent eigenvalues for small LWR critical assemblies
with large neutron leakages, while the classic out-scatter approxi-
mation produced errors in eigenvalue as large as 1000 pcm. In
addition, SIMULATE-3 nodal code developers observed (more than
30 years ago) that the CASMO transport cross section also pro-
duced two-group diffusion coefficients that eliminated radial
power tilts observed in large 4-loop PWR cores when using the
out-scatter approximation.

1.2. Various deterministic approximation methods for transport cross
sections

Many approximation methods for computing diffusion coeffi-
cients have been investigated in the past 40 years, among which
the ‘‘out-scatter” approximation based on the ‘‘micro-balance”
argument is probably the most often used one, assuming that the
in-scatter rate of neutrons from energies E0 to E will approximately
balance the out-scatter rate of neutrons from E to all other energies
(Stamm’ler and Abbate, 1983). The approximation can be repre-
sented as.Z 1

0
Rs1ð~r; E0 ! EÞ~Jð~r; E0ÞdE0 �

Z 1

0
Rs1ð~r; E ! E0Þ~Jð~r; EÞdE0 ð1Þ

in which Rs1ð~r; E0 ! EÞ is P1 scattering cross section from E0 to E at~r,

and ~Jð~r; E0Þ is the neutron current of energy E0 at ~r. Based on this
approximation, the multi-group transport cross section can be
derived to be the expression in Eq. (2).

Ros
tr;g ¼ Rt;g � lgRs0;g ð2Þ
In this equation, Ros

tr;g is the transport cross section from the out-
scatter approximation, Rt;g is the total cross section, Rs0;g is the P0

scattering cross section, lg is the average scattering cosine of the
neutrons, and subscript g denotes the group index. The spatial
dependence on~r is omitted in most equations in this paper for clar-
ity and generally all the terms refer to the same spatial position.

For neutron energies relevant to nuclear reactor physics, elastic
scattering with H can be seen as approximately isotropic in the
center-of-mass system, and lg can be calculated to be 2=3 when
thermal upscattering is not taken into account. This leads to a sim-
ple prescription for computing diffusion coefficients by taking lg

to be 2=3 for all groups, which produces

Ras
tr;g ¼ Rt;g � 2

3
Rs0;g ð3Þ

in which Ras
tr;g is the transport cross section from the ‘‘asymptotic”

out-scatter approximation.
Another approximation makes the hypothesis that the neutron

current cannot exceed the scalar flux and it uses the scalar flux
spectrum instead of neutron current spectrum for weighting P1

scattering cross sections (Pomraning, 1984). The transport cross

section computed by this method as shown in Eq. (4) can be called
‘‘flux-limited” transport cross section.

Rfl
tr;g ¼ Rt;g �

XG
g0¼1

Rs1;g0!g/g0

/g
ð4Þ

In Eq. (4) /g is scalar flux in group g and Rs1;g0!g is the P1 cross sec-
tion of scattering from group g0 to group g.

Actually according to P1 theory, the in-scatter can be treated
exactly with given multi-group cross sections. In recent research
on the transport correction for hydrogen (Herman, 2014), a 70-
group library for H bound in water molecules was generated using
NJOY (Macfarlane et al., 2000), including a 70-group P0 and P1 scat-
tering matrix with the thermal scattering effect (using sða; bÞ tables
for light water molecules). Using the group data, the multi-group
P1 equations can be solved numerically to get the flux and current
spectrum. Then the transport cross section can be computed
directly following the definition as

Rin
tr;g ¼ Rt;g �

XG
g0¼1

Rs1;g0!g
~Jg0

~Jg
ð5Þ

in which Rin
tr;g is the transport cross section with in-scatter calcu-

lated directly and the result of this method will be used as reference
for comparison with other approximation methods.

2. Analytical derivation and numerical comparison of transport
cross section ratio

2.1. Analytical derivation of transport cross section ratio

The analytical transport correction ratio for an isotope with
atomic mass A can be derived in an infinite homogeneous medium
with the assumption of only down scatter. In this case the diffusion
coefficient can be derived from the second P1 equation (Hebert,
2009), as shown in Eq. (6).

DðEÞ ¼ 1
3RtðEÞ 1þ 3

/ðEÞ
Z E

a

E
Rs1ðE0 ! EÞDðE0Þ/ðE0ÞdE0

" #
ð6Þ

In Eq. (6) a ¼ ðA� 1Þ2=ðAþ 1Þ2. The differential P1 scattering cross
sections can be expressed as

Rs1ðE0 ! EÞ ¼ �l
RtðE0Þ

ð1� aÞE0 ¼
2
3A

RtðE0Þ
ð1� aÞE0 : ð7Þ

Through the relationship between diffusion coefficient and
transport cross section D ¼ 1=ð3RtrÞ, Eq. (6) can be re-written as

1
3RtrðEÞ ¼

1
3RtðEÞ 1þ 3

/ðEÞ
Z E

a

E

2
3A

RtðE0Þ
ð1� aÞE0

1
3RtrðE0Þ/ðE

0ÞdE0
" #

ð8Þ

The transport correction ratio is defined as f ðEÞ ¼ Rtr ðEÞ
RtðEÞ . The ratio

can be derived by rearranging Eq. (8).

f ðEÞ ¼ 1þ 2
3Að1� aÞ/ðEÞ

Z E
a

E

/ðE0Þ
f ðE0ÞE0 dE

0
" #�1

ð9Þ

According to slowing down theory, flux density at energy E can
be approximated as

/ðEÞ ¼
Z 1

E

vðE0Þ
nRsðEÞE dE

0 ð10Þ

in which vðE0Þ is the source density at energy E0 from Watt fission
spectrum, and n ¼ 1þ a

ð1�aÞlnðaÞ. Under the approximation, Eq. (10)

holds for A ¼ 1, but for A > 1 it doesn’t take the Placzek transient
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