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a b s t r a c t

We compare and contrast ‘‘virtual density” perturbation theory with the traditional boundary perturba-
tion theory developed by Pomraning, Larsen, and Rahnema in the context of diffusion theory. First, after
reviewing that literature, we mathematically prove that virtual density perturbations and traditional
boundary perturbations are precisely equivalent for arbitrary 1-D problems, which constitute non-
uniform isotropic expansions. We also mathematically prove that these two perturbation theories are
equivalent for 2-D boundary shift problems, which constitute non-uniform anisotropic expansions.
Extension of this proof to swellings or 3-D problems is straightforward. We compare the two theories
numerically for a series of alternating uranium and sodium 1-D slabs in finite difference diffusion, and
we show that virtual density theory predicts reactivities much more accurately and efficiently than tra-
ditional boundary perturbation theory. Boundary perturbation theory is often very inaccurate on a coarse
mesh but converges to the virtual density solution as the mesh becomes finer. We also compare the two
theories for axial assembly swelling in an abbreviated FFTF benchmark with a coarse mesh. Here we find
that reactivity coefficients obtained via virtual density perturbation theory agree with reference solutions
to within 0.1%, while those obtained via boundary perturbation theory exhibit sporadic accuracy – some-
times in the range of 1–5% error, more frequently in the range 5–20% error, and occasionally well over
100% error in control rod assemblies. We conclude that although virtual density perturbation theory
and boundary perturbation theory are analytically equivalent, boundary perturbations in diffusion theory
are often thwarted in coarse mesh finite difference solutions due to inaccurate flux gradients along mesh
cell surfaces in heterogeneous cores.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Our original ‘‘virtual density” paper numerically validated non-
uniform anisotropic virtual density theory against ‘‘virtual mesh”
diffusion reference cases (Reed et al., 2018). Now we seek to
ascertain how well virtual density theory performs relative to
traditional boundary perturbation theory. Showing that our new
theory works is nice, but showing how it compares to previous
methods could ‘‘seal the deal”. This paper assumes that the reader
is familiar with the original virtual density paper and refers back to
that paper multiple times (Reed et al., 2018).

First, however, we demonstrate the analytic equivalence of
virtual density perturbation theory and traditional boundary
perturbation theory. This is important, because it represents an

analytic ‘‘proof” that ‘‘virtual density” theory is valid – if theory
A has already been proven, and we subsequently prove that theory
B is equivalent to theory A, we have therefore also proven that the-
ory B is valid. Our original virtual density paper presented the the-
ory based on physical and mathematical reasoning but provided no
formal derivation (Reed et al., 2018). We now present that here.

In this work, we use the term ‘‘boundary” to include both ‘‘in-
ternal interfaces” and ‘‘external boundaries” as defined by Pomran-
ing, Larsen, Rahnema, and Favorite. This is because, as we shall see,
virtual density theory makes no distinction between these two
types of perturbations.

2. A review of traditional boundary perturbation theory

Most classical perturbation theory literature is centered around
one class of perturbations: material density changes. However,
there is a second major class of perturbations: geometry changes.
Pomraning aptly characterized the fundamental distinction
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between these two perturbation classes (Pomraning, 1983). Let
�� 1 be a small perturbation parameter. Then material density
perturbations are Oð�Þ cross-section changes over Oð1Þ volumes.
In contrast, geometry perturbations are Oð1Þ cross-section changes
over Oð�Þ volumes. Thus, geometry perturbations are inherently
more difficult, because they require relatively large changes in
cross-sections.

Komata published the first major paper on geometric perturba-
tion theory in 1977 (Komata, 1977). He showed that one can con-
vert a boundary perturbation into a boundary condition
perturbation (Rahnema and Ravetto, 1998). This obviates part of
the problem, but, of course, it only applies to external boundaries
(where boundary conditions exist).

2.1. First order transport and diffusion (1980s)

Pomraning, Larsen, and Rahnema carried out most of the semi-
nal work on boundary perturbation theory in both diffusion and
transport simultaneously. Their first paper ‘‘Boundary Perturbation
Theory” succeeded in becoming the revered authority (Larsen and
Pomraning, 1981). Larsen and Pomraning derived explicit first
order perturbation expressions (in both diffusion and transport)
to evaluate reactivities due to small perturbations in the external
boundary of a reactor. Their result for one-group diffusion is

Dq ¼
R
dSj~r0 �~rjD n̂ � r/y� �

n̂ � r/ð ÞR
dV/ymRf/

: ð1Þ

Here we have negated the vacuum boundary extrapolation con-
dition. The denominator contains the usual core-wide fission
source integration, identical to that in classic perturbation theory.
The numerator contains a surface integral over the unperturbed
surface S. The quantity j~r0 �~rj is the magnitude of the distance
between the unperturbed surface ~r and the perturbed surface ~r0.
The unit vector n̂ is perpendicular to the unperturbed surface.
Although we have only written this for one energy group, the
extension to multigroup is simple – simply sum up the numerator
and denominator over all energy groups.

Shortly after deriving this formula for external surfaces, the trio
began to study internal interface perturbations – slightly moving
an internal boundary between two materials so that one material
‘‘substitutes” the other. However, Rahnema and Pomraning discov-
ered an ‘‘anomaly” in the application of boundary perturbation
theory to these internal interface shifts. Specifically, classic first
order perturbation theory does not correctly predict the first
derivative of reactivity as it does for material density changes. This
‘‘anomaly” does not appear in transport theory – it is an artifact of
the diffusion approximation that appears at internal material inter-
faces (Rahnema and Pomraning, 1981). They corrected the ‘‘anom-
aly” and proposed a general expression for an internal interface
perturbation in one-group diffusion:

Dq¼
R
dSj~r0 �~rjQR
dV/ymRf/

where

Q ¼ DR�DLð Þr/y
R �r/Lþ/y 1

k
mRf �Ra

� �
L

� 1
k
mRf �Ra

� �
R

� �
/:

ð2Þ
This applies to an internal interface shift to the right. The

subscripts R and L denote quantities evaluated immediately to
the right and left of the boundary. Note that although the flux gra-
dient is discontinuous across the interface, the flux itself is always
continuous. In terms of a material density perturbation, one could
consider the R quantities to be the unperturbed case while the L
quantities are the perturbed case. When a surface moves to the

right, the L quantities replace the R quantities. Also note that Eqs.
(1) and (2) have an additional minus sign that does not appear in
the literature, but this is only because Dð1=kÞ ¼ �Dq.

Later on, Pomraning revisited this ‘‘anomaly” and derived
another corrected first order perturbation formula for an internal
interface shift in one-group diffusion theory (Pomraning, 1983):

Dq ¼
R
dSj~r0 �~rjQR
dV/ymRf/

where

Q ¼ � D
D0 dDr/y � r/þ /y 1

k
dðmRf Þ � dRa

� �
/:

ð3Þ

Here dRa ¼ Ra;L � Ra;R and dðmRf Þ ¼ mRf ;L � mRf ;R. Similarly,
dD ¼ DL � DR;D ¼ DR, and D0 ¼ DL. The two unperturbed flux gradi-
ents are evaluated to the right of the perturbation, because the
rightward region is the unperturbed region. Conservation of (real
and adjoint) current across the interface can allow one to convert
the leakage term in Eq. (3) to that in Eq. (2). Note that Eq. (3) is pre-
cisely equivalent to Eq. (2). Pomraning simply re-formulates the
perturbation in terms of a material density change.

Pomraning notes that Eq. (3) is fully general to both material
density and boundary perturbations. In the case of a small material
density perturbation, one can estimate D=D0 � 1. Then the numer-
ator in Eq. (3) is identical to a classic first order perturbation
formula (for material densities).

These expressions in Eqs. (1)–(3) correctly predict the first order
(one-group diffusion) reactivity due to small perturbations in
external and internal boundaries. However, the predictions will
only be correct if one has obtained very accurate (real and adjoint)
flux gradients on the unperturbed boundary.

Rahnema and Pomraning derived one-group first order pertur-
bation formulas for changes in various quantities (anything that
is a linear functional of the flux – not just eigenvalue) due to
changes in external boundaries in fixed-source problems
(Rahnema and Pomraning, 1983). Rahnema and Pomraning later
wrote a paper generalizing these methods to full multigroup trans-
port and diffusion (Rahnema and Pomraning, 1983). This leap was
crucial, as previous papers had demonstrated the methods only for
simple one-group examples.

Pomraning showed that one can obtain first order estimates for
reactivities due to non-analytic perturbations in the external
boundaries of a reactor (Pomraning, 1983). The previous methods
allowed for only an analytic continuous extension of the material
adjacent to the external boundary, but Pomraning’s work here
allows for adding arbitrary material compositions to the external
boundary such that the boundary perturbation is ‘‘non-analytic”.

At last, Rahnema and Pomraning presented multigroup trans-
port and diffusion perturbation formulas for internal interface per-
turbations coupled with material density perturbations (Rahnema,
1984). This was the final step in demonstrating that first order
boundary perturbation theory was possible for both internal and
external boundaries in both transport and diffusion.

2.2. Higher order transport and diffusion (1990s–2000s)

After the initial flurry of work by Pomraning, Larsen, and
Rahnema, the literature is mostly silent on the topic for about a
dozen years. Rahnema revisited the internal interface problem in
the mid-1990s, and he re-derived the first order expressions via
the ‘‘crossmultiplication” method (Rahnema, 1996).

Then, Gheorghiu and Rahnema developed the first higher order
(variational) estimates of reactivity due to boundary perturbations
(Gheorghiu and Rahnema, 1997; Gheorghiu and Rahnema, 1998).
This work covers both transport and diffusion, but it is only valid
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