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a b s t r a c t

Sustainable nuclear energy will likely require fast reactors to complement the current light water reactor
paradigm. In particular, breed-and-burn sodium fast reactors (SFRs) offer a unique combination of fuel
cycle and power density features. Unfortunately, large breed-and-burn SFRs are plagued by positive
sodium void worth. In order to mitigate this drawback, one must quantify various sources of negative
reactivity feedback, among which geometry distortions (bowing and flowering of fuel assemblies) are
often dominant. These distortions arise mainly from three distinct physical phenomena: irradiation swel-
ling, thermal swelling, and seismic events.
Distortions are notoriously difficult to model, because they break symmetry and repeating patterns.

Currently, no efficient and fully general method exists for computing neutronic effects of distortions.
Computing them directly via diffusion would require construction of exotic meshes that seldom exist
within the neutronics community. Many deterministic transport methods are geometrically flexible
but tightly constrained by assumptions of symmetry and repeating patterns. Monte Carlo offers the only
high-fidelity approach to arbitrary geometry, but resolving minute reactivities and flux shift tallies within
large heterogeneous cores requires CPU years per case and is thus prohibitively expensive. Currently, the
most widely-used methods consist of various approximations involving weighting the uniform radial
swelling reactivity coefficient by the power distribution. These approximations agree fairly well with
experimental data for flowering in some cores, but they are not fully general and cannot be trusted to
work for arbitrary distortions in generic cores. Boundary perturbation theory, developed in the 1980s,
is fully general and mathematically rigorous, but it is inaccurate for coarse mesh diffusion and has never
been applied in industry.
Our solution is the ‘‘virtual density” theory of neutronics, which alters material density (isotropically or

anisotropically) instead of explicitly changing geometry. While geometry is discretized, material densi-
ties occupy a continuous domain; this allows density changes to obviate the greatest computational chal-
lenges of geometry changes. Although primitive forms of this theory exist in Soviet literature, they are
only applicable to cases in which entire cores swell uniformly. Thus, we conceive a much more general
and pragmatic form of virtual density theory to model non-uniform and localized geometry distortions
via perturbation theory. In this work, we develop and implement virtual density theory entirely in the
context of diffusion.
In order to efficiently validate virtual density perturbation theory, we conceive the ‘‘virtual mesh”

method for diffusion theory. This new method involves constructing a slightly perturbed ‘‘fake” mesh
that produces correct first-order reactivity and flux shifts due to anisotropic swelling or expansion of
individual mesh cells. First order reactivities computed on a virtual mesh agree with continuous energy
Monte Carlo to within 1r uncertainty.
We validate virtual density theory via the virtual mesh method in 3-D coarse mesh models of the Fast

Flux Test Facility (FFTF) and J�oy�o benchmarks using the MATLAB-PETSc-SLEPc (MaPS) multigroup finite
difference diffusion code, which we developed for this purpose. We model a panoply of non-uniform ani-
sotropic swelling scenarios, including axial swelling of individual assemblies, axial swelling of each mesh
cell in proportion to its fission power, and radial core flowering with arbitrary axial dependence. In 3-D
coarse mesh Cartesian cores with explicit coolant gaps, we model individual assembly motion, assembly

https://doi.org/10.1016/j.anucene.2017.09.023
0306-4549/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: mark.wilbert.reed@gmail.com (M. Reed), kord@mit.edu (K. Smith), bforget@mit.edu (B. Forget).

Annals of Nuclear Energy 112 (2018) 549–596

Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier .com/locate /anucene

http://crossmark.crossref.org/dialog/?doi=10.1016/j.anucene.2017.09.023&domain=pdf
https://doi.org/10.1016/j.anucene.2017.09.023
mailto:mark.wilbert.reed@gmail.com
mailto:kord@mit.edu
mailto:bforget@mit.edu
https://doi.org/10.1016/j.anucene.2017.09.023
http://www.sciencedirect.com/science/journal/03064549
http://www.elsevier.com/locate/anucene


row motion with arbitrary axial dependence, and assembly row ‘‘s-shape” bowing. In all cases, we find
that virtual density perturbation theory predicts reactivity coefficients that agree with virtual mesh ref-
erence cases to within 0.01%. These reactivity coefficients are two to four orders of magnitude more accu-
rate than those computed via boundary perturbation theory. In general, this virtual density perturbation
method can precisely predict reactivity coefficients due to anisotropic swelling or expansion of any core
region in any direction.

� 2017 Elsevier Ltd. All rights reserved.

1. A review of uniform isotropic virtual density theory

1.1. Introduction

Core reactivities are sensitive to geometry distortions arising
from three distinct phenomena: (1) irradiation swelling of fuel
throughout core lifetime, (2) thermal swelling of fuel during tran-
sients, and (3) mechanical oscillations during seismic events. Per-
forming comprehensive reactivity analysis of these distortions
requires methods for rapidly computing a multitude of small shifts.
Traditionally, these reactivity effects have been studied via bound-
ary perturbation theory developed by Pomraning, Larsen, Rah-
nema, and Favorite (Larsen and Pomraning, 1981; Rahnema and
Pomraning, 1983; Rahnema and Pomraning, 1983; Rahnema,
1984; Favorite and Bledsoe, 2010). However, those methods were
never applied to full-core 3-D reactor models, and there is evidence
to suggest that multiple boundary perturbations interfere with one
another (Favorite, 2010).

See Chapter 2 of Mark Reed’s doctoral thesis (Reed, 2014), upon
which this paper is based, for a thorough literature review of pre-
existing geometric distortion modeling methods, especially bound-
ary perturbation theory.

Thus, we introduce the ‘‘virtual density” theory of neutronics as
a new perturbation method based on fundamentally different prin-
ciples. Essentially, this virtual density theory converts geometric
perturbations into equivalent material density perturbations,
which are more accurate and much simpler to evaluate. In this sec-
tion, we introduce and validate this technique for uniform isotropic
cases, which include (1) swellings and expansions of simple ana-
lytic problems and (2) swellings of 2-D heterogeneous full-core
models (isotropic swelling of 3-D core models is unrealistic).

In this work, we use the term ‘‘boundary” to include both
‘‘internal interfaces” and ‘‘external boundaries” as defined by Pom-
raning, Larsen, Rahnema, and Favorite. This is because, as we shall
see, virtual density theory makes no distinction between these two
types of perturbations.

1.2. The virtual density concept

For now, let us consider an idealized uniform core swelling in
which every material in the entire reactor swells by the same fac-
tor. Of course, in real scenarios the liquid coolant would not swell
at the same rate as other materials, but we will neglect that effect
for now. Let the reactor volume be V, and let any given material
atom density be N. If mass is conserved, then N will vary inversely
proportional to V.

N / 1
V

ð1Þ

If we let k be any given neutron mean free path in the core, then
k will vary proportional to V. Let Rt and rt be the macroscopic and
microscopic total cross-sections, respectively.

k / 1
Rt

¼ 1
Nrt

/ V ð2Þ

During this core swelling, the neutron mean free path increases
at a rate greater than the rate at which all linear core dimensions
increase. Thus, the net reactivity will be negative – the negative
reactivity effect due to reduced material densities overcomes the
positive reactivity effect due to increased core size, and so the
net effect is increased leakage. This is true for any arbitrary reactor
(homogenous or heterogeneous) except an array of infinite 1-D
slabs, for which the net reactivity is precisely zero.

If we wished to keep reactivity constant during a uniform swel-
ling of an arbitrary reactor, we would need to scale up the neutron
mean free path proportional to the core linear dimensions (V1=3).

k / V1=3 ! N / V�1=3 ð3Þ
Thus, if we uniformly swell the core volume V and simultane-

ously reduce all core material densities proportional to V1=3, the
neutron leakage rate does not change. Of course, it follows that
the relative magnitudes of neutron fluxes between internal core
regions do not change such that the spatial neutron distribution
does not change. Furthermore, because the relative proportions
of all materials in the core are fixed, the neutron energy spectrum
is also fixed. Thus, the reactor is essentially ‘‘scaled up” with no
change to reactivity, spatial flux distributions, or local flux spectra.

1.2.1. Three axioms
Intuitively, we can summarize this generic principle with three

closely-related axioms:

Axiom 1: Swelling all linear dimensions of any reactor by a certain
factor while simultaneously reducing all material densities by that
same factor will result in exactly zero change to reactivity and
relative flux distributions.

Axiom 2: The reactivity and flux distribution effects of a uniform
core swelling (or contraction) can be exactly replicated by manip-
ulating material densities with no change to core geometry.

Axiom 2 is a direct logical consequence of Axiom 1. While
Axiom 1 states that we can counteract a dimension change with a
density change, Axiom 2 states that we can replicate a dimension
change with a density change. Naturally, this begs for a third
axiom:

Axiom 3: If any arbitrary dimensional change can be counteracted
by a material change, then that same dimension change can be
replicated by a different material density change.

These three axioms encapsulate the basic virtual density theory
for isotropic expansions and swellings.

1.2.2. Definitions: ‘‘swelling”, ‘‘expansion”, ‘‘isotropic”, ‘‘anisotropic”,
‘‘uniform”, ‘‘non-uniform”

Throughout this paper, we define a swelling as a dimension
change with a corresponding density change that conserves mass.
Thermal enlargement of a solid is one example of a swelling. In
contrast, we define an expansion as a dimension change without
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