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a b s t r a c t

We extend the familiar Bӧhnel point-model equations, which are routinely used to interpret neutron
coincidence counting rates, by including the contribution of delayed neutrons. After developing the
necessary equations we use them to show, by providing some numerical results, what the quantitative
impact of neglecting delayed neutrons is across the full range of practical nuclear safeguards applications.
The influence of delayed neutrons is predicted to be small for the types of deeply sub-critical assay prob-
lems which concern the nuclear safeguards community, smaller than uncertainties arising from other
factors. This is most clearly demonstrated by considering the change in the effective (a,n)-to-
spontaneous fission prompt-neutron ratio that the inclusion of delayed neutrons gives rise to. That the
influence of delayed neutrons is small is fortunate, and our results justify the long standing practice of
simply neglecting them in the analysis of field measurements.

Published by Elsevier Ltd.

1. Introduction

Neutron coincidence counting (NCC) is a well-established and
widely used technique for non-destructively assaying the pluto-
nium content of items (Ensslin, 1991; Ensslin et al., 1998; Pázsit
et al., 2009). The conventional target quantity of the assay is the
240Pu-effective mass, a weighted linear sum of 238Pu, 240Pu and
242Pu. The total plutonium mass can then be derived from the
240Pu-effective mass from independent knowledge of the isotopic
composition of the plutonium. The primary measured quantities
in NCC are the singles and doubles rates. The singles count rate,
S, is the total neutron time-averaged event rate on the pulse train
and is often referred to as the totals rate. The doubles (reals, pairs
or coincidence) rate, D, is most often determined using a form of
autocorrelation analysis known as shift-register logic (Ensslin,
1991). For practical non-destructive assay applications the two
rates are expressed in terms of a combination of item and detector
parameters, and nuclear data constants, using algebraic expres-
sions based on a one-group, point, prompt-kinetics model
(Bohnel, 1985; Favalli et al., 2015; Cifarelli and Hage, 1986; Croft
et al., 2012, 2015a,b, 2016; Croft and Favalli, 2012) – the so called
Bӧhnel point-model equations (Ensslin, 1991; Ensslin et al., 1998;
Pázsit et al., 2009; Bohnel, 1985). These can then be solved for

the 240Pu-effective mass. The standard formulation of the point-
model equations neglects delayed neutrons, this is an approxima-
tion. In this article we quantify what impact this routinely applied
approximation has on assay results across the domain of nuclear
safeguards.

Our starting point is the familiar point-model equations for the
singles and doubles counting rates. These may be expressed as
follows:

S ¼ FSeMLð1þ aÞmS1 ð1Þ

D ¼ FSe2f dM
2
L
mS2
2

1þ mS1ð1þ aÞ
mS2=2

ML � 1
mI1 � 1

� �
mI2
2

� �
ð2Þ

where the variables used are defined as follows:
FS = the effective 240Pu spontaneous fission rate =meff � g, the
product of the 240Pu-effective mass, meff , and g, the specific
spontaneous fission rate of 240Pu,
e = the neutron detection efficiency (probability of detection per
neutron emerging from the item),
mSi = ith factorial moment of the spontaneous fission neutron
distribution,
mIi = ith factorial moment of the induced fission neutron
distribution,
ML is the neutron leakage self-multiplication ML ¼ MT � pL ¼
ð1� pf � pcÞ=ð1� mI1pf Þ where MT ¼ 1=ð1� mI1pf Þ is the total
self-multiplication, pL = 1 � pf � pc is the probability of neutron
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leakage, where pf and pc are the probabilities for a neutron to
undergo fission and parasitic captures (Croft et al., 2012,
2015b; Pázsit, 2016),
a = the (a,n)-to-spontaneous fission prompt-neutron produc-
tion ratio, i.e. (a,n)-rate/(FS�mS1),
fd = the doubles gate utilization factor (Ensslin et al., 1998; Croft
and Favalli, 2012; Henzlova et al., 2015).

For the present discussion we imagine the common application
in which the properties of the detector (efficiency and gate utiliza-
tion factor) are assumed to be known from calibration and the
a-value can be calculated from the isotopic composition of the
a-emitting constituents of the measurement items (e.g. 238Pu,
239Pu, 240Pu, 241Pu, 242Pu, and 241Am) and chemical form (e.g. diox-
ide) of the chemically pure compound inside the item.

2. Derivation of Böhnel-like point model equation with delayed
neutrons embedded

2.1. Delayed neutrons and assumptions in the model

Passive neutron coincidence counting assays are performed in
steady state conditions when the neutron emission processes have
settled into a quiescent dynamic equilibrium. Thus we can speak in
terms of the time averaged behavior. Delayed neutrons are emitted
long after the associated prompt fission neutrons (which for our
discussion are emitted essentially instantaneously at the time of
fission), on a typical time scale of �1/10–100 s (Keepin et al.,
1957; Walker and Weaver, 1979). This is also much longer than
the time prompt fission neutrons take to emerge from measure-
ment item and subsequently persist in the detector system
(for commonly used moderated 3He based detection systems the
characteristic detector die-away time is of the order of 10’s ls)
(Ensslin, 1991; Croft et al., 2012, 2016). Thus, as a practical matter,
the fundamental assumption we introduce in our treatment is that
DN’s have the essential characteristics of time random neutrons,
like (a,n) neutrons, being created one at a time and independent
in time from the parent fission events (see also Fermi, 1942;
Uhrig, 1970 for discussion of delayed neutrons in a reactor close
to critical) This is a key assumption in order to introduce DN con-
tributions into the Bӧhnel-like point model equations, as we will
do in the next chapter. For the discussion, it is also worth noting
that, in the Böhnel point-model equations, time never appears
explicitly. One derives first the distribution of the total number
of neutrons leaving the sample per one starting neutron, and after
that per one source event (spontaneous fission neutrons with a
number distribution), assuming that all these neutrons (including
internal multiplication before leakage) are all generated ‘‘instanta-
neously” (the idea of ‘‘superfission” introduced by Bohnel (1985).
Time, in the form of count rates of singles, doubles etc., which
means detection per unit time, enters only by assuming a source
intensity for the spontaneous fissions (and of course (a,n) neu-
trons), but assuming that the fission chains do not overlap (the
concept of superfission guarantees this, since the evolution of the
chains takes zero time). Hence the doublets, triplets etc. are calcu-
lated from the generation rate of the multiplets and the detection
probability of neutrons. Finite (between zero and unity) gate fac-
tors account for the use of finite coincidence gates and the finite
residence time of neutrons in the detector. Delayed neutrons, how-
ever, by definition, cannot be accommodated into the concept of
superfission. But our assumption that all neutrons which originate
from a delayed neutron precursor represent only time-
uncorrelated ‘background’ allows us to introduce the DN contribu-
tion in the Böhnel point-model equations like a special kind of

(a,n) contribution. By this assumption we avoid having to deal
explicitly with connected time-dependent processes, because neu-
trons belonging to the prompt-fission chain are separated from
those generated by delayed neutron precursors. The former gives
the correlated counts, the latter the corresponding uncorrelated
background. A full derivation by master neutron stochastic equa-
tion is in preparation (Pázsit), but it goes beyond the scope of this
paper, which is ultimately to quantify the contribution of the
delayed neutron production in the Böhnel point-model equations
and applied in the nuclear safeguards and also waste management
assay scenarios.

2.2. Derivation of the equations

Each spontaneous fission (SF) gives rise to an average of mSd
DN’s, and each induced fission (IF) gives rise to an average of mId
DN’s. In the one neutron energy-group point-model (Croft et al.,
2012), each neutron initially released inside the measurement item
also results, again on average, in a number of IF’s given by:

pf �MT ¼ MT � 1
mI1

� ML � 1
mI1 � 1

� �
; IF per n ð3Þ

where:
pf is the probability that the initial neutron history will end in
absorption resulting in fission;
MT is the total self-multiplication = 1/(1-mI1pf );
and, the approximate form on the right hand side holds when
the probability of parasitic pc (e.g. (n,c)) neutron capture in
the item relative to the corresponding probability of induced
fission pf is small.

In nuclear safeguards of plutonium, the items of interest are
usually deeply sub-critical (Ensslin, 1991; Ensslin et al., 1998),
and, we are concerned with quantifying the mass of Pu present
through the 240Pu-effective mass which is used as a measure of
the overall SF rate. We shall therefore treat the SF process as the
primary initiating event and scale primary (‘source term’) neutron
production from it. Now, on the average FS SF’s take place per sec-
ond and these in turn liberate (FS�mS1) prompt neutrons per second
into the system along with (FS�mSd) delayed neutrons, and [(FS�mS1)�
a] (a,n) neutrons. Thus, the rate at which primary-source neutrons
are released into the measurement item is given by:

FSmS1 1þ aþ mSd
mS1

� �
ð4Þ

and hence the rate of IF DN production is obtained by the product of
Eq. (4), Eq. (3), and the IF DN yield as follows:

FSmS1 1þ aþ mSd
mS1

� �
ML � 1
mI1 � 1

� �
mId ð5Þ

The IF DN contribution given by Eq. (5), like the SF DN’s, have
the essential (mathematical) characteristics of additional (a,n)
events. Thus, in the standard point-model equations, Eqs. (1) and
(2), we should replace the term (1 + a) by the following term:

1þ aþ mSd
mS1

� �
1þ ML � 1

mI1 � 1

� �
mId

� �
ð6Þ

For non-multiplying items the second factor in brackets reduces
to zero. For chemically pure metallic items we would expect (a,n)
production to be close to zero and so, the time-random neutron
production will be influenced most strongly by the DN component
for such materials. This may be the case for certain calibration
items, for example.
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