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a b s t r a c t

As a rule, mathematical modeling of dynamic processes in nuclear reactors is conducted using an
approach that treats a neutron flux in the multigroup diffusion approximation. In this approach, the basic
model involves a multidimensional system of coupled parabolic-type equations. Similarly to common
thermal phenomena, it is possible here to separate a regular mode of nuclear reactor operation that is
associated with a selfsimilar development of a neutron field at large times. In this case, the main feature
of dynamic processes is a minimal eigenvalue of the corresponding spectral problem. In the present
paper, calculations of various eigenvalues are performed via the two-group model and discussed for
the VVER-1000 reactor without a reflector and HWR reactor.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The physical processes in a nuclear reactor (Duderstadt and
Hamilton, 1976) depend on distribution of neutron flux, whose
mathematical description is based on the neutron-transport equa-
tion (Hetrick, 1971; Stacey, 2007). The general view of this equa-
tion is integro-differential one, and the required distribution of
neutrons flux depends on time, energy, spatial and angular vari-
ables. As a rule, the simplified forms of the neutron transport equa-
tion are used for practical calculations of nuclear reactors. The
equation system that is known as a multigroup diffusion approach
is mostly used for reactor analysis (Marchuk and Lebedev, 1986;
Lewis and Miller, 1993; Sutton and Aviles, 1996; Cho, 2005) and
is applied in most engineering calculation codes.

Modern reactor simulations are actually based on transport cal-
culations (see, for example, Smith and Rhodes, 2002; Sanchez,
2012; Boyd et al., 2014). In multiscale reactor-physics simulations
diffusion models are derived and applied using sophisticated
homogenization methodologies Sanchez (2009) which define
parameters of the multigroup diffusion equations that enable one
to take into account transport effects. The homogenization
methodologies use solution of specially defined transport prob-
lems to generate homogenized cross sections for the multigroup

diffusion equations. Most of current methodologies (see, for exam-
ple, Sanchez (2009)) use k-eigenvalue transport problems to calcu-
late averaging shape functions. Recently Dugan et al. (2016)
developed advanced homogenization methods apply a-
eigenvalue transport problems.

The standard methods of approximate solutions of non-
stationary problems are used for modelling of the dynamics of
neutron-physical processes. The most attention is paid to two-
level schemes with weights (h-method) (Ascher, 2008; LeVeque,
2007; Hundsdorfer and Verwer, 2003), the Runge–Kutta and
Rosenbrock schemes (Butcher, 2008; Hairer and Wanner, 2010)
are used. Let’s note a special class of methods for modelling of
non-stationary neutron transport in diffusion multigroup approxi-
mation, which is connected with multiplicative representation of
solution — space–time factorization methods and the quasistatic
method (Chou et al., 1990; Dahmani et al., 2001; Dodds, 1976;
Goluoglu and Dodds, 2001). The approximate solution is searched
in the form of the product of two functions, one of which depends
on time and is related to the amplitude, the second one (the shape
function) describes the spatial distribution. It is difficult to check
the accuracy of the approximate solution in such approach, in par-
ticular, while calculating the dynamic modes with complicated
changes in neutron flux distribution.

The processes occurring in a nuclear reactor are essentially non-
stationary. The stationary state of neutron flux, which is related to
the critical state of the reactor, is characterised by local balancing
of neutron absorption and generation. This boundary state is usu-
ally described by solution of a spectral problem (Lambda Modes
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problem, k-eigenvalue problem) provided that the fundamental
eigenvalue (maximal eigenvalue) that is called k-effective of the
reactor core, is equal to unity. In this case, the stationary neutron
field is related with the corresponding eigenfunction. Calculations
of k-effective of the reactor on the basis of the spectral Lambda
Modes problem solution are obligatory for developing a new
design of reactor installation.

Time behaviour of nuclear reactor is deemed sometimes to be
related to the deviation of k-effective from unity that involves, in
particular, concept of reactivity. This is not justified, since, while
calculating this parameter, the evolutionary nature of neutron
redistribution processes (nonstationary systems of the equations)
is considered in no way. The k-effective parameter deviates from
unity, though quite weakly, but anyway such a solution, generally
speaking, cannot be connected with the stationary solution of the
problem. There is simply no such a solution. Thus, the attempts
to correct the basic mathematical model of non-stationary neutron
diffusion by introducing some correcting multipliers to achieve the
strict criticality are not successful.

The spectral parameter a, which is not directly connected with
k-effective, is proposed to be used instead of k-effective for more
adequate characteristic of the dynamic nature of reactor. It is
defined as the fundamental eigenvalue of the spectral problem
(time-eigenvalue, a-eigenvalue problem), which is connected with
the non-stationary equations of neutron diffusion (Bell and
Glasstone, 1970; Modak and Gupta, 2007; Verdu et al., 2010). By
analogy with the usual problems of heat conductivity (see, for
example, Luikov, 1968; Samarskii and Vabishchevich, 1996) we
consider the regular reactor mode. At large times the behavior of
a neutron flux is asymptotic, and one can talk about space–time
factorization solution, whose amplitude is expðatÞ, the shape func-
tion is the eigenfunction of the spectral problem.

The Lambda and Alpha Modes spectral problems deal with a not
self-adjoint vector elliptic operator. Generally, the eigenvalues are
complex. The strict conclusion concerning the eigenvalue reality
was obtained (see, for instance, Habetler and Martino, 1961) under
reasonable physics assumptions only for the fundamental
eigenvalue. Performed precise calculations of the reactor test
problems (the VVER-1000 reactor without a reflector and HWR
reactor) confirm the fact that the next eigenvalues may be
complex with small imaginary parts. Our investigation clarifies
the results of other authors (González-Pintor et al., 2009), which
give only real parts of the eigenvalue for the same test problems.
These clarifications deal with the accuracy control during
eigenvalue and eigenfunction calculations using a set of fine
meshes and finite elements of different degree; also we used
applied software aimed to solve spectral problems with not self-
adjoint operators.

Study of the dynamic processes can be based on the discrimina-
tion of symmetric and skew-symmetrical parts of the neutron
transport operator. In this case, we can easily get the a priori
assessments of stability in the corresponding norm, while assess-
ing the operator of the symmetric part from below, and perform
the analysis of used time approximations (Samarskii, 2001;
Samarskii et al., 2002). To get this, the partial spectral problem is
solved to find the fundamental eigenvalue d of the Delta Modes
spectral problem.

The paper is organised as follows. The statement of the
boundary-value problem for the system of non-stationary diffusion
equations in multigroup approach is given in Section 2. Various
spectral problems are discussed in Section 3. A numerical example
of calculation of spectral characteristics within the frameworks of
two-dimensional test problems for VVER-1000 reactor and HWR
reactor using the two-group system of diffusion equations is dis-
cussed in Section 4. The results of the work are summarised in
Section 5.

2. Problem statement

The neutron flux is considered in multigroup diffusion
approximation. The neutron dynamics is considered in
the limited convex two-dimensional or three-dimensional area
Xðx ¼ fx1; . . . ; xdg 2 X; d ¼ 2;3) with boundary @X. The neutron
transport is described by the system of equations:

1
vg

@/g

@t
�r � Dgr/g þ Rrg/g �

XG
g–g0¼1

Rs;g0!g/g0

¼ ð1� bÞvg

XG
g0¼1

mRfg0/g0 þ evg
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m¼1

kmcm; g ¼ 1;2; . . . ;G: ð1Þ

Here /gðx; tÞ — neutron flux of g group at point x and time
t, G — number of energy groups, vg — effective velocity of neutrons
in the group g, DgðxÞ — diffusion coefficient, Rrgðx; tÞ — removal
cross-section, Rs;g0!gðx; tÞ — scattering cross-section from group g0

to group g, b — effective fraction of delayed neutrons, vg ; evg —
spectra of prompt and delayed neutrons, mRfgðx; tÞ — generation
cross-section of group g, cm — density of sources of delayed
neutrons of m-type, km — decay constant of sources of delayed
neutrons, M — number of types of delayed neutrons. The density
of sources of delayed neutrons is described by the equations:

@cm
@t

þ kmcm ¼ bm

XG
g¼1

mRfg/g ; m ¼ 1;2; . . . ;M; ð2Þ

where bm is a fraction of delayed neutrons of m-type, and

b ¼
XM
m¼1

bm:

System of Eqs. (1) and (2) is supplemented with corresponding
initial and boundary conditions.

The albedo-type conditions are set at the boundary @X of the
area X:

Dg
@/g

@n
þ cg/g ¼ 0; g ¼ 1;2; . . . ;G; ð3Þ

where n — outer normal to the boundary @X.
Let’s propose that the reactor was critical up to the initial time

moment (t ¼ 0):

/gðx;0Þ ¼ /0
gðxÞ; cmðx;0Þ ¼ c0mðxÞ: ð4Þ

For /0
gðxÞ and c0mðxÞ we get:
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0
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Let’s consider the problem without taking into account delayed
neutrons (all neutrons are prompt). We assume that all neutrons
(including delayed neutrons) are born as prompt, but their spectra
vg and evg are different. Then instead of (1) one can obtain the fol-
lowing equation:

1
vg

@/g

@t
�r � Dgr/g þ Rrg/g �

XG
g–g0¼1

Rs;g0!g/g0

¼ ð1� bÞvg þ bevg

� �XG
g0¼1

mRfg0/g0 ; g ¼ 1;2; . . . ;G: ð5Þ

A.V. Avvakumov et al. / Annals of Nuclear Energy 99 (2017) 68–79 69



Download	English	Version:

https://daneshyari.com/en/article/8067338

Download	Persian	Version:

https://daneshyari.com/article/8067338

Daneshyari.com

https://daneshyari.com/en/article/8067338
https://daneshyari.com/article/8067338
https://daneshyari.com/

