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This paper develops a novel approach to incorporate the contributions of both quantitative validation
metrics and qualitative subject matter expert (SME) evaluation criteria in model validation assessment.
The relationship between validation metrics (input) and SME scores (output) is formulated as a classifi-
cation problem, and a probabilistic neural network (PNN) is constructed to execute this mapping.
Establishing PNN classifiers for a wide variety of combinations of validation metrics allows for a
quantitative comparison of validation metric performance in representing SME judgment. An advantage
to this approach is that it semi-automates the model validation process and subsequently is capable of
incorporating the contributions of large data sets of disparate response quantities of interest in model
validation assessment. The effectiveness of this approach is demonstrated on a complex real-world
problem involving the shock qualification testing of a floating shock platform. A data set of experimental
and simulated pairs of time history comparisons along with associated SME scores and computed
validation metrics is obtained and utilized to construct the PNN classifiers through K-fold cross
validation. A wide range of validation metrics for time history comparisons is considered including
feature-specific metrics (phase and magnitude error), a frequency metric (shock response spectra), a
time-frequency metric (wavelet decomposition), and a global metric (index of agreement). The PNN
classifiers constructed using a Parzen kernel for the class conditional probability density function whose
smoothing parameter is optimized using a genetic algorithm performs well in representing SME

judgment.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Verification and Validation (V&V) is a formalized methodology
to systematically ensure a degree of confidence in a model [14,29-
31,38,43,46,51]. Model validation is defined as [29] “The process
of determining the degree to which a model is an accurate repre-
sentation of the real world from the perspective of the intended uses
of the model.” The model validation process consists of a hierarchy
of comparisons between computational models and experiments
of system components (subsystems) in order to determine the
accuracy of a computational model of the full system. It is often
the case that no or minimal experimental data is available for the
full system and model error must be quantified through extra-
polation. Thus, the model validation process lends itself well
to statistical decision-theoretic methods [2], and a framework
has been developed based on Bayesian networks [23]. Related
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concepts of decision theory have been applied extensively for risk-
based decision optimization of civil infrastructure systems and
networks (e.g. [1,7,8,27,49]). In the Bayesian network framework
for the model validation hierarchy [23], the full system is directly
represented by a performance function determined by a series of
conditional probabilities of dependent nodes. In order to establish
the contribution and acceptable errors of the dependent nodes,
multiple Monte Carlo simulations of the performance function
must be run (i.e. this equates to Monte Carlo simulation of the full
system).

Model validation of a subsystem involves evaluating the dis-
crepancy between experimentally recorded and simulated system
response quantities (SRQs) of interest- which typically are scalars
(random variables) or time histories (random processes)- in order
to determine the degree of accuracy of a model. Validation
metrics, which are derived from a distance function of a metric
space, provide a quantitative goodness-of-fit measure between
experimental and simulated SRQs. Definitions and desired proper-
ties can be found in [28]. Numerous types of validation metrics
have been developed such as probabilistic-based comparisons of
scalar quantities (e.g. the area metric [39], Bayesian hypothesis
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testing based metrics [16,17,21,23], margin-to-uncertainty based
metric [13], reliability-based metric [36]), global comparisons of
time histories (e.g. maximum and relative error metrics [28], index
of agreement [52], coefficient of efficiency [20]), feature-specific
comparisons of time histories (e.g. phase error metrics [10,48],
magnitude metrics [10,44]), metrics applied to derived quantities
(e.g. wavelet transformations [ 18], shock response spectra [9]), and
many more.

It is emphasized that the acceptance criteria (adequacy) for a
subsystem is not only based on validation metric values (measures
of accuracy) but also on the contribution of all subsystems to the
full system. This is difficult to quantify a priori not only due to
computation costs but also due to the lack of understanding of
model form error during preliminary full system simulations.
Subject matter experts (SMEs) play a vital role in making an
interim assessment regarding whether or not a model for a
subsystem ought to be accepted or if an alternative model must
be studied. Here, the SME makes an adequacy assessment based
on the accuracy measured from validation metrics, graphical
comparisons of time histories, and expert judgment with regard
to the contribution of the subsystem to the performance criteria of
the full system. These decisions are associated with large costs as
computational models can be expensive for subsystems, especially
when uncertainty quantification (UQ) is required.

For complicated physics problems, such as structures subjected
to extreme dynamic loading, validation metrics defined over entire
time histories are considered necessary (i.e. capturing the salient
features of response time histories into a small subset of para-
meters is an open issue). However, establishing a single or an
ensemble of validation metrics for time history comparisons that
consistently agree with SME graphical comparisons is very chal-
lenging. This is due to both the difficulty in identifying the
inherent preferences of SMEs [22], and the imperfect performance
of validation metrics for time history comparisons. A study by
Schwer [45] compared an ensemble of validation metrics to SME
scores and trends in the metrics' performances were observed.
A similar study was conducted by Russell [40,41] where the
performance of a large number of validation metrics was evaluated
for known functions and shock response data. In these studies,
comparison of validation metrics to SME opinion is done qualita-
tively. However, in Ref. [44] linear regression models relating
validation metrics to SME scores are fitted and shown to predict
SME evaluation (within the variability of SME evaluations) for
automobile crash-worthiness tests. The contributions of the cur-
rent work can be viewed as an extension of Ref. [44]: namely (1) a
general framework to incorporate SME evaluation and validation
metrics into model validation assessment is proposed and (2) the
validation metrics to SME mapping is done through a supervised,
nonlinear learning algorithm, which has the capability to improve
as more data becomes available.

Establishing a relationship between validation metrics and SME
evaluation criteria has the potential to allow for a quantitative
performance assessment of validation metrics, identify preference
of an SME, and facilitate handling large data sets of validation
studies through process semi-automation (e.g. the manual nature
of SME evaluation limits the assessment to only spot-checking a
small subset of the available time history comparisons.). Tackling
these issues is predicated on the existence of a reliable mapping
and is beyond the scope of this paper. Instead, this paper focuses
on establishing such a mapping by formulating the relationship
between validation metrics and SME scores as classification
problem, which is then constructed using a probabilistic neural
network (PNN) [47]. PNNs are pattern recognition algorithms
widely used in machine learning applications representing the
human-machine interface [3]. PNNs are constructed for multiple
combinations of validation metrics providing both the threshold

values of validation metrics corresponding to model accuracy
levels (consistent with SME judgment) and a quantitative basis
for evaluating their performance. The paper begins with a brief
discussion of validation metrics in Section 2 and SME roles in V&V
in Section 3. A formulation to determine a model validation score
by combining SME scores of various SRQs derived from validation
metric values is given in Section 4. A description of PNNs and the
particular construct used in this work is in Section 4.1. An example
is given in Section 5 where the methodology is exercised on a
complex, real-world problem in order to demonstrate its efficacy.
The paper concludes with a discussion of the results and sum-
marizes the findings.

2. Discussion of a model validation metric

A metric has been defined as follows [53]: given any three
random variables X1,X,,X3 € £2 where 2 is a sample space with
Borel o-algebra as the collection of all events # with measurable
probability P, and space £2; =2 x £ being the space of the joint
distribution of (Xj, X)) Vj,k, then metric M : {X;, X} >R*(R" =
[0 ... c0)) has the following properties:

P(X1=X3)=1= M(X;,X3)=0, (1a)
M(X1,X2)=0=PX1ef)=PX2€f), fer, (1b)
M(X1,X3) =M(X2,X1), (10)
M(X1,X3) < M(X1,X2)+M(X3,X3). (1d)

Thus a metric is a distance function on metric space £2, with the
properties of non-negativity (Eq. (1a)), identity (Eq. (1b)), symmetry
(Eq. (1¢)) and triangular inequality (Eq. (1d)). Metrics applied to the
marginal probability density function (PDF) of random variables are
denoted as simple metrics, that is, M : {fx, (X1).fx,(x2)} > R*, for
fx,(x1) and fy, (x2) being the marginal PDF of random variables X;
and X5, respectively. Metrics applied to all other functions of X; and
X5 are denoted as compound metrics (this paper is solely concerned
with compound metrics; specifically, time histories which can be
either realizations or moments of the marginal distributions of
random processes).

Consider a computational model ¢ : {p,8.} —Y that maps input
loading p(x, t, f.) to output response Y(X, t) as a function of spatial
and time coordinates x € R?,t € R*, respectively. The uncertainty
is modeled by a set of random variables . representing uncer-
tainty of input loading, model parameters, and model ¢ itself. This
computational model is intended to represent an experimentally
tested physical system @: {p,0,}—Y with p,Y defined as above
and 0, representing uncertainties associated with the experimen-
tal test set up, such as measurement errors and human error.

A model validation metric for time history comparisons of
model ¢, M : {Y{O(t),Y{”(t)} >R, is a quantitative measure of the
goodness-of-fit between computationally simulated and experi-
mentally recorded SRQs Y{”(t) and Y{” (¢t), respectively at locations
X, : k=1,2,...,N; for N, being the number of locations with sensor
recordings. The mathematical definition of a metric (Egs. (1a)-
(1d)) is often loosened in specific application areas so as to obtain
a desired performance [11,35]. For example, model validation
metrics are typically scaled to be defined in [0 1] and are functions
of covariances of X1,X, (violating Eq. (1d)), and are often taken to
be relative to the experimental data (violating Eq. (1c)). Specific
metrics considered in this work are given in Section 5.1.

3. Model assessment using SME judgment

An SME is broadly defined as someone who has a background
in the subject of concern and has qualifications recognized by the
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