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a b s t r a c t

The size and complexity of software in spacecraft is increasing exponentially, and this trend complicates
its validation within the context of the overall spacecraft system. Current validation methods are labor-
intensive as they rely on manual analysis, review and inspection. For future space missions, we
developed – with challenging requirements from the European space industry – a novel modeling
language and toolset for a (semi-)automated validation approach. Our modeling language is a dialect of
AADL and enables engineers to express the system, the software, and their reliability aspects. The
COMPASS toolset utilizes state-of-the-art model checking techniques, both qualitative and probabilistic,
for the analysis of requirements related to functional correctness, safety, dependability and performance.
Several pilot projects have been performed by industry, with two of them having focused on the system-
level of a satellite platform in development. Our efforts resulted in a significant advancement of
validating spacecraft designs from several perspectives, using a single integrated system model. The
associated technology readiness level increased from level 1 (basic concepts and ideas) to early level 4
(laboratory-tested).

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A spacecraft is a machine that fulfills mission objectives outside
of Earth. Spacecraft design involves a vast body of natural sciences
and many engineering fields, including, but not completely cover-
ing, materials, optics, power, propulsion, performance, reliability
and security engineering. These disciplines are integrated into an
interdisciplinary field known as systems engineering that addresses
the design of systems and the management of complex engineer-
ing projects over their life-cycle. Space systems engineering [1] is
an evolving field and its current state of practice is strongly
influenced by a relatively new engineering discipline, namely that
of software development.

Spacecraft in the early space age included software whose size
was at most a few dozens of lines of code. The advent of digital
interfaces of parts and equipment, and the flexibility of software-
based control over analogue interfaces and electrical/mechanical

control led to an exponential growth of the size of the deployed
software [2]. Nowadays, the latter is compiled from millions lines
of code. Hence, software dictates the overall spacecraft behavior to
an ever-increasing degree. This is also reflected within the space
systems engineering life-cycle. More emphasis is now given to the
system–software perspective that encompasses the interaction
between the software and the remainder of the system, typically
perceived by the software engineers as hardware.

The COMPASS project [3] advances the system–software per-
spective by providing means for its validation in the early design
phases, such that system architecture, software architecture, and
their interfacing requirements are aligned with the overall func-
tional intents and risk tolerances. Validation in the current practice
is labor-intensive and consists mostly of manual analysis, review
and inspection. We improve upon this by adopting a model-based
approach using formal methods. In COMPASS, the system, the
software and its reliability models are expressed in a single
modeling language. This language originated from the need for a
language with a rigorous formal semantics, and it is a dialect of the
Architecture Analysis & Design Language (AADL). Models
expressed in our AADL dialect are processed by the COMPASS
toolset that automates analyses which are currently done manu-
ally. The automated analyses allow studying functional correctness
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of discrete, real-time and hybrid aspects under degraded modes of
operation, generating safety and dependability validation artifacts,
performing probabilistic risk assessments, and evaluating effec-
tiveness of fault management. The analyses are mapped onto
discrete, symbolic and probabilistic model checkers, but all of
them are completely hidden away from the user by appropriate
model-transformations. The COMPASS toolset is thus providing an
easy-to-use push-button analysis technology.

The first ideas and concepts for the development of the
COMPASS toolset emerged in 2007, due to a series of significant
advances in model checking [4], and especially in its probabilistic
counterpart [5]. These advances opened prospects for an inte-
grated model-based approach towards system–software correct-
ness validation, safety and dependability assessment and
performance evaluation during the design phase. Its technology
readiness level was estimated at level 1, i.e. basic principles were
observed and reported. The European Space Agency (ESA) issued a
statement of work to improve system–software co-engineering
and this was commissioned to the COMPASS consortium consist-
ing of RWTH Aachen University, Fondazione Bruno Kessler and
Thales Alenia Space. Development started soon after, and in 2009 a
COMPASS toolset prototype was delivered to the European space
industry. Maturation was followed by subsystem-level case studies
performed by Thales Alenia Space [6]. As of 2012, two large pilot
projects took place in ESA for a spacecraft in development. This
marked the maturation of the COMPASS toolset to early level 4,
namely laboratory-tested. The novel contribution of this paper is
the report on the second pilot project. This paper furthermore
summarizes the background work and the first pilot project,
whose results were published elsewhere [7]. Altogether, it
describes the current state of the art in system–software space-
craft co-engineering, ranging from the used techniques, to the
tools and the conducted industrial projects.

This paper is organized as follows. A brief overview of space
systems engineering is given in Section 2, which is followed by an
introduction to the developed modeling language (Section 3), the
toolset (Section 4) and its analyses. The spacecraft platform is
described in Section 5, and the pilot projects are presented in

Sections 6 and 7. The paper wraps up with the related work
(Section 8) and the conclusions (Section 9).

2. Space systems engineering

The European tradition and practice of spacecraft engineering is
codified in the ECSS standards [9] issued by the European Space
Agency. The spacecraft system life-cycle is depicted in Fig. 1. It starts
with mission analysis in phase 0. In phase A, management and
engineering plans are set up and functional aspects and feasibility
are investigated. During phase B, a preliminary system design is
drafted and reviewed. In the phases that follow, the system design is
refined to its implementation and the system is verified, launched and
operated. In the early phases and most notably in phase B, the system
is decomposed into its constituent parts, including the thermal, power,
attitude control subsystems and the software. Experts on the respec-
tive engineering discipline further refine the subsystems, while system
engineers ensure coherency among them.

Increasing software functionality. Software plays an increasing
and vital role in the overall system that is evident from the
exponential growth of the source code sizes in modern spacecraft
[2]. Today, software accompanies modern microprocessors in
order to provide unprecedented functionality for an ever increas-
ing range of mission demands. For example, navigation systems
are equipped with software that delivers strict orbit control for
improved precision. Also, on-board software handles enormous
mission data sets generated by the high-resolution sensors used in
Earth observation satellites. Dedicated software implements func-
tionality that addresses key reliability and autonomy require-
ments. Especially for deep space missions, where communication
windows are short and delays are long, autonomy in terms of
survivability is essential to mission success. This is mainly
achieved by a fault management system [10], the major part of
which is realized through software. Supported functions include
monitoring, detection, isolation and mitigation of spacecraft faults
that may occur due to the harsh space conditions (mechanical
stress, wear and radiation). Functional correctness, safety, and
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Fig. 1. Space systems engineering life-cycle of European missions. Source: ECSS Standard on Project Planning and Implementation [8].
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