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a b s t r a c t

Derived from the conventional characteristic sweeping operations, the method of characteristics (MOC)
with matrix form has more favorable performance compared with its traditional implementation poten-
tially. However, the advantage depends heavily upon the efficiency of the linear algebraic solver. In current
study, a simple and efficient preconditioning technique is implemented in the restart version of
Generalized Minimal RESidual algorithm (GMRES) to accelerate the resulted linear system. A complete
code including geometry processing and algebraic solver has been developed and verified with the refer-
ence benchmark problem. Numerical results demonstrate the code canmodel the reference problem accu-
rately, and the proposed preconditioning techniques based on the typical iterative method can decrease
dramatically the number of iterations without introducing additional computation and storage expense.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Since the method of characteristic (MOC) has been proposed
(Askew, 1972), there have been a mount of researches for it due
to its geometrical flexibility and natural parallel potential. At pre-
sent, both the latest developed codes and the upgrade versions of
previous softwares have introduced the MOC computation module
to handle the arbitrary geometry for two dimension or three
dimension case, such as DeCART (Joo et al., 2004), CRX (Hong
and Cho, 1998), Chaplet (Kosaka and Saji, 2000), DRAGON
(Marleau et al., 2011), CASMO-4 (Smith and Rhodes, 2002). How-
ever, the acceptable results can only be obtained by sweeping
the neutron travel tracks once and again until the outer iteration
reaches convergence. To reduce the number of outer iterations,
the method of coarse mesh finite difference (CMFD) has been
adopted in great majority of transport codes, and numerical exper-
iments have demonstrated CMFD is a computationally inexpensive
and efficient acceleration technique. Nevertheless, the time-
consuming sweeping operations seemingly indicate conventional
MOC is still not a efficient method. Derived from the recurrent
sweeping operations, the linear algebra form of MOC can improve
computation efficiency essentially (Zhang et al., 2011), because it
permits one to take advantage of more acceleration techniques in
linear algebra field which can provide the additional latest and
efficient numerical algorithm to solving transport equation. There-

fore the focus problems are transformed into how to establish the
linear algebra system (including precalculation coefficient matri-
ces/right hand sides) and solve the linear system efficiently.

Although the configurations of coefficient matrices are irregular
for transport problems generally, one could still find some regular-
ities particularly for the application arisen from MOC, which will
reduce the time establishing the coefficient matrices. Furthermore,
the coefficient matrices even become the consequents after apply-
ing elementary transformations to symmetric matrices if the neu-
tron travel tracks can be mapped with special pattern (Wu et al.,
2014). To solve the final large sparse linear system, the Generalized
Minimal RESidual (GMRES) algorithm is a popular choice among
iterative methods (Takeda and Kitada, 2012). Details about this
algorithm can be found in the original paper (Saad and Shultz,
1986). As a variety of Krylov subspace method, GMRES is an attrac-
tive technique in sparse matrix computation field since being pro-
posed because it can solve unsymmetric linear system elegantly.
However, it is observed that is not efficient enough when the coef-
ficient matrices become larger for the current transport issue. It is
necessary to propose a acceleration approach to improve its con-
vergence behavior. From the numerical perspective, the principal
topic is to find an appropriate preconditioner which can transform
the original linear system into one with the same solution, but that
is likely to be easier to solve with the same iterative solver.

When matrix is less sparse, choosing an appropriate precondi-
tioner can be difficult. In particular, it is of vital importance to keep
the sparsity and decrease computation cost for large sparse linear
system. Arising from the discretization of PDEs of elliptic type, the
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incomplete LU factorization technique was developed originally for
M-Matrix and become the most common preconditioner at pre-
sent. Although elements filling within can be controlled by ILU(p)
or ILU(s, p), the memory requirement and computation time are
prohibitively expensive with respect to large scale matrix.

In current work, a new MOC code employing preconditioned
Krylov subspace method has been developed and verified against
the reference benchmark, i.e. OECD/NEA C5G7 MOX (OECD,
2003). The rest of this paper is organized as follows: Section 2 exhi-
bits the methodology of this study, including the overview of the
code and the details about the acceleration technique, Section 3
displays the numerical experiments for the verification and evalu-
ation of the implemented acceleration scheme, Section 4 makes the
conclusions for the present work.

2. Theoretical model

The code can be divided into several modules: the first one is
the geometry processing consisted of geometry representation
and characteristic line tracing; the second is to establish the struc-
ture of coefficient matrices and insert nonzero elements by sweep-
ing all neutron travel tracks; the last one is to solve the sparse
linear system using preconditioned Krylov subspace method. All
above modules were programmed based on C language.

2.1. Geometry processing

The information of tracks is obtained by a independent geome-
try processing module similar to OpenMOC (Boyd et al., 2014) with
improvement which can efficiently determine the identifier of flat
source region (FSR) that a given local coordinate resides within.
Entire geometry is represented by a list of constructive solid geom-
etry formulations (CSG) by which arbitrary complicated geometry
can be constituted theoretically. The most elementary unit is the
FSR (namely basic cell in code), which consists of one material
identifier and several weighted curves named surfaces. Each
weighted curve has only two weight values, i.e. �1 or +1, which
separate the whole space into two half-spaces exactly, namely neg-
ative space or positive space, determined by the value of curve
function, thus the curve becomes the interface of two FSRs. Entire
geometry is constructed in a hierarchical fashion, including follow-
ing nested entities: Cell, Universe, Lattice.

In order to avoid generality loss, the tracks need sweeping
entire computational domain to generate the information of all
segments. Contrasting with AMRT (Sanchez et al., 2002), this
method needs more computation time and memory requirement,
but it is absolutely necessary and worthwhile to handle arbitrary
complicated geometry. Meanwhile this additional cost is negligible
comparing with the iteration process of linear algebra system, and
there is a typical remedy benefiting from the symmetry, thus only
the tracks whose azimuths reside within in range (0–p) need to be
considered, the remaining tracks have the identical information
except for inverse direction. In OpenMOC, the FSRs’ identifiers
are searched in a hash table based on the alphabetical string of
the FSR’s hierarchical level. In current study, the hash table is elim-
inated and the FSR’s identifier is determined in advance only based
on the FSR’s hierarchical level.

2.2. Matrix characteristics method

There are a mount of articles about the derivation of matrix
MOC, the general concept is that outgoing angular flux can be
expressed in term of incident angular flux and neutron source of
the FSR. Continuously, the angular flux located on the boundary
can be expressed in terms of incident flux and the neutron sources

of all FSRs spanned by this track (the energy group index has been
omitted for simplicity hereafter):
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The track’s average angular flux in any FSR can be expressed in
terms of its incident flux and the FSR’s source, furthermore the
FSR’s average angular flux can be calculated in terms of the ‘‘width”
of segments and their average angular flux. After taking weighted
sum of whole average angular flux located in FSR i, one can obtain
the scalar flux of FSR i:
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Specifically, after distinguishing the ingroup scattering term
from total source in FSR i and rearranging the Eq. (3), the following
matrix equation can be obtained for whole FSRs:

ðS1 þ D1ÞUþ S01W ¼ S1Q ð4Þ
where S1 denotes the sweeping matrix by n� n for scalar flux con-
tribution between FSRs and S01 represents the sweeping matrix by
n�m for angular flux contribution; D1 is a diagonal matrix by
n� n whose elements are the differences between transport and
self-scattering cross sections; U;W;Q are the vectors of scalar flux,
angular flux and the outgroup source respectively, the n and m
are the number of FSRs and tracks respectively.

It should be pointed out that only those FSRs connected by iden-
tical track canmake contribution to each other, so thematrix S1 and
S01 would definitely be sparse, the sparsity depends upon discretiza-
tion scheme for direction, domain and the density of the tracks.
Consequently, it is difficult to determine the number and positions
of nonzero elements in compress sparse row (CSR) storage format
prior to sweeping the tracks. The two-step strategy is adopted in
current study: the matrix structure is constituted firstly by pre-
sweeping tracks’ information, then the coefficients are calculated
and inserted in the proper positions defined by the matrix struc-
ture. Thanks to that matrix structure is shared by all energy groups,
it can reduce memory and computation expense lightly.

The additional m equations to close the algebra system are pro-
vided through implementing the outer boundary condition to Eq.
(1), which could result in Eq. (5):

S2Uþ ðEþ S02ÞW ¼ S2Q ð5Þ
where S2; S02 denote the contributions of scalar flux and incident
angular flux to reflection tracks’ incident angular flux respectively.

It should be noted that S1 ¼ ST1D; S2 ¼ PS0T1 where D denotes the
n� n diagonal matrix whose elements are determined by the FSRs’
scattering ratios, thus what needs to be calculated is only the upper
triangular part of the S1 when generating matrix for each group,
and the P denotes the permutation matrix which swaps the rows
appropriately and should result in the identity matrix E; S02 has only
one element in each row which denotes the contribution of track’s
incident angular flux to outgoing flux (i.e. reflection track’s
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