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a b s t r a c t

MC21 is a continuous-energy Monte Carlo radiation transport code for the calculation of the steady-state
spatial distributions of reaction rates in three-dimensional models. The code supports neutron and pho-
ton transport in fixed source problems, as well as iterated-fission source (eigenvalue) neutron problems.
The capability to simulate the production of photon-induced neutrons has been added to the code. In this
paper, relativistic two-body kinematics are used to derive exact expressions for the secondary energy and
angle distribution of photoneutrons. This treatment, implemented in MC21, is important in cases where
the evaluated photonuclear data does not give an explicit energy distribution. Comparisons of the
relativistic relations were made to approximations in MCNP5 and TRIPOLI-4, highlighting the magnitude
of the error of those approximations.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

MC21 is a Monte Carlo neutron and photon transport code
under joint development by Bechtel Marine Propulsion Corpora-
tion at the Knolls Atomic Power Laboratory and the Bettis Atomic
Power Laboratory (Griesheimer et al., 2013). MC21 is the Monte
Carlo transport kernel of a system of codes that provides an
automated, computer-aided modeling and post-processing envi-
ronment. In photon transport calculations, typically, the reactions
simulated are the photoatomic reactions such as photoelectric,
incoherent (Compton) scattering, coherent scattering, and pair pro-
duction. In cases where the energy of the source photons are high,
in the MeV range, photonuclear interactions need to be taken into
account in transport simulations. These photons can interact with
nuclides above the threshold of a photoneutron reaction and
induce the production of neutrons. Sources of high energy photons
include the decay of fission products and activation nuclides in a
nuclear reactor or from spent fuel. These photons can subsequently
interact with deuterium in heavy water or with a beryllium reflec-
tor, for example, thus producing neutrons from a photoneutron
reaction. The production of photoneutrons can be an important
source of neutrons in a reactor or in certain reactor component
scenarios, depending on the gamma sources present and the
material composition. For a full description of the photoatomic
interaction physics as implemented in MC21, the reader is referred
to Griesheimer et al. (2013). As a brief summary, MC21 uses

continuous energy transport of photons and treats all common
photon interaction mechanisms, including Compton scattering,
coherent scattering, pair production, and photoelectric interac-
tions. It also employs a thick-target bremsstrahlung approxima-
tion. Electron transport is not explicitly treated.

For each nuclide having photonuclear data, the ENDF file
(Herman et al., 2012) specifies both the cross sections and sec-
ondary angle and energy distributions for outgoing neutrons from
photoneutron reactions. In many cases, the evaluators have chosen
to represent the outgoing energy and angle distributions as tabu-
lated or parameterized functions. When this occurs, NJOY is able
to produce secondary distribution data in the usual ACE-format
laws (MacFarlane et al., 2012); consequently MC21 uses the same
sampling routines as it would use for incident neutron reactions
that have a neutron in the exit channel. There is one particular
ENDF product energy-angle distribution that requires further
efforts in order to faithfully represent the collision physics. When
the distribution is specified as a discrete two-body scattering dis-
tribution (MF = 6, LAW = 2), NJOY processes the data to provide a
tabulated angle distribution in the ACE-format data, but it is left
to the Monte Carlo code to decide how to calculate the exiting neu-
tron energy. In ENDF/B-VII.1 data, two-body scattering is specified
for photoneutron reactions in 2H, 12C, 16O, 51V, 180W, and 183W. As
will be discussed later, Monte Carlo codes have adopted different
methods for how to calculate the exiting photoneutron energy
for two-body events. This paper describes the photonuclear
reaction for a (c,n) event or the photon-induced production of a
neutron in the exit channel. Section 2 describes how the energy
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and direction for a particle emerging from a two-body collision of a
(c,n) reaction can be determined rigorously using relativistic
kinematic relations. Sections 2.2 and 2.3 applies these relations
to describe the two-body kinematics used for obtaining the exiting
neutron energy and direction from the photoneutron reaction X(c,
n)Y. Section 3 describe the comparisons with photoneutron
kinematics approximations used in other Monte Carlo codes.

2. Two-body interaction applied to photoneutron reactions

In MC21, the exiting neutron energy and direction for
photoneutron reactions are obtained from relativistic two-body
kinematics. The relations used for calculating the kinematic quan-
tities are exact and are not specific to any particular reaction.

2.1. Overview of relativistic kinematics

A four-vector is defined as a line segment with direction in four-
dimensional spacetime in the same way as a three-dimensional
vector (to be referred to as a three-vector) can be defined as a line
segment with direction in three-dimensional Euclidean space. This
quantity contains a time component and three spatial components.
Four-vectors can be added, subtracted, and multiplied by numbers
in agreement to the standard rules for vectors. The length of a four-
vector is the absolute value of the spacetime distance between its
tail and its tip, and is not specific to any inertial frame. The length
of four-vectors are invariant (the quantity does not change) in all
inertial frames, and that is the usefulness and importance of
four-vectors (Landau and Lifshitz, 1971; Hartle, 2003).

The relations used for calculating the kinematic quantities are
exact and are not specific to any particular reaction. While a full
derivation of the relations used in MC21 for relativistic kinematics
is beyond the scope of this paper, the most important points and
formulas are highlighted.

The contravariant components of the four-momentum vector
for a particle of mass m and velocity ~v are defined as

Pl ¼ cmc; cm~vð Þ: ð1Þ
where the Lorentz factor, c, is

c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d~r

dt

� �2.
c2

r ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~v

c

� �2q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q : ð2Þ

The first term on the right-hand side of Eq. (1) is related to the total
energy of the particle, E ¼ cmc2. The second term on the right-hand
side of the equation is the momentum of the particle, ~p ¼ cm~v .
Eq. (1) is therefore equivalent to the following expression.

Pl ¼ E
c
;~p

� �
: ð3Þ

The covariant components of the four-momentum vector are

Pl ¼ E
c
;�~p

� �
: ð4Þ

The term E in Eqs. (3) and (4) is the sum of the kinetic energy
and the rest-mass equivalent energy of the particle

E ¼ T þmc2: ð5Þ
From Eqs. (3) and (4), we have the square of the four-momentum of
a free particle

PlP
l ¼ E2

c2
� p2; ð6Þ

where p ¼ k~pk. From Eqs. (3) and (4),

PlP
l ¼ m2c2: ð7Þ

This result is an invariant since it does not change under a rotation
or a Lorentz transformation of the four-dimensional coordinate sys-
tem. Equating Eqs. (6) and (7) yields the energy, mass, momentum
relation

E2 ¼ p2c2 þ mc2
� �2

: ð8Þ

2.2. Two-body interaction applied to photoneutron reactions

In this section we describe the general two-body interaction
mechanics and its application to a photon interacting with a
nuclide where a neutron and a residual nuclide are produced, rep-
resented by X(c,n)Y. We solve for the exiting neutron energy and
direction using relations described in the previous section and
applying techniques used at high energy physics laboratories for
solving kinematics problems (Hagerdorn, 1980; Olive, 2014).

Let us represent the interaction X(c,n)Y in terms of particle
masses as m1ðm2;m3Þm4, where m1 is the target nucleus mass,
m2 is the incident particle mass, m3 is the emergent particle mass,
andm4 is the residual nucleus mass. It is assumed that the particles
and nuclei are not excited (ground state). Consider a reaction in the
laboratory frame of reference where a particlem2 that collides with
particle m1, initially at rest, results in two exiting particles, m3 and
m4.

The four-momentum contravariant vector for the reacting
particles is

P ¼ E1 þ E2

c
;~p1 þ~p2

� �
: ð9Þ

Since the target nucleus (m1) is at rest, ~p1 ¼ 0; T1 ¼ 0, and
E1 ¼ m1c2 resulting in

P ¼ m1c2 þ E2

c
;~p2

� �
: ð10Þ

The four-momentum squared is invariant, and applying this to the
reacting particles one obtains

s ¼ P � P ¼ PlP
l: ð11Þ

Applying Eq. (8) to Eq. (11) for particle 2, the invariant quantity is
now expressed as

s ¼ m2
1c

2 þm2
2c

2 þ 2m1E2: ð12Þ
E2 can be substituted with the rest-mass equivalent energy plus the
kinetic energy to yield

s ¼ m1c þm2cð Þ2 þ 2m1T2 ð13Þ
In this paper an apostrophe is used to denote a particle quantity in
the center-of-mass (COM) frame of reference. In the center-of-mass
frame of reference the momenta of m1 and m2 are equal and oppo-
site. Therefore the total momentum is equal to zero. The momenta
ofm3 and m4 are also equal and opposite. The four-momentum vec-
tor in the center-of-mass frame of reference for the pre-collisions
system is

Pcm ¼ P0
1 þ P0

2 ¼ E0
1 þ E0

2

c
;0

� �
: ð14Þ

The Lorentz invariant s does not change from one frame of
reference to another, as it is the scalar product of a four-vector.
In the center-of-mass reference frame one obtains

s ¼ Pcm � Pcm ¼ E01 þ E02
c

� �2

¼ E2
cm

c2
; ð15Þ
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