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a b s t r a c t

Forward quantification of simulation (code) response uncertainties requires knowledge of physical model
parameter uncertainties. Nuclear thermal-hydraulics codes, such as RELAP5 and TRACE, do not provide
any information on uncertainties of physical model parameters. A framework is developed to quantify
uncertainties of physical model parameters using Maximum Likelihood Estimation (MLE), Bayesian
Maximum A Priori (MAP), and Markov Chain Monte Carlo (MCMC) algorithms.
The objective of the present work is to perform the sensitivity analysis of the physical model parame-

ters in code TRACE and calculate their uncertainties using MLE, MAP, and MCMC algorithms. The OECD/
NEA BWR Full-size fine-mesh Bundle Test (BFBT) data is used to quantify uncertainty of selected physical
models of TRACE code. The BFBT is based on a multi-rod assembly with measured data available for single
or two-phase pressure drop, axial and radial void fraction distributions, and critical power for a wide
range of system conditions. In this work, the steady-state cross-sectional averaged void fraction distribu-
tion is used as the input data for inverse uncertainty quantification (IUQ) algorithms, and the selected
physical model’s probability distribution function (PDF) is the desired output quantity.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The U.S. Nuclear Regulatory Committee (NRC) advocates best-
estimate calculations (D Auria et al., 2006) for the understanding
of Emergency Core Cooling System (ECCS) performance during
reactor transients. The term ‘‘best-estimate” is used to indicate
the attempt to predict realistic thermal-hydraulics response of a
reactor system. The conservative approach provides a bound to
the prediction by considering extreme (bounding) conditions. In
a best-estimate calculation, the calculation should predict the
mean of experimental data and should consider the effects of all
important variables whenever possible. If some variables are not
possible or practical to consider in a phenomenon, the effect of
omitting these variables should be provided in the form of compu-
tational uncertainty.

NRC has developed and assessed several advanced best-
estimate codes for simulating thermal-hydraulics transient prob-
lems, including TRACE (Bajorek, 2008) and RELAP5 (United States
Nuclear Regulatory Commission, 2002). These codes predict the
major phenomena observed over a broad range of thermal-
hydraulics and fuel tests, for example Loss Of Coolant Accident

(LOCA), and can be used to perform best-estimate calculations of
ECCS performance. The reliability of predictions of the system
codes is closely related to the validation of their physical models.
For example, the accuracy of void fraction prediction is important
for safety margin evaluation, because void fraction has a significant
effect on the reactivity, pressure drop, critical heat flux, and other
phenomena. Void fraction is determined by various physical mod-
els, such as drag models and heat transfer models. Part of the
uncertainty in void fraction prediction is propagated from the
uncertainties in these physical models.

Uncertainty analysis (UA) aims to quantify the overall uncer-
tainty associated with the output as a result of uncertainties in
the input parameters (Neykov, 2006; Gajev et al., 2014). There
are essentially two parts in an uncertainty analysis. The first part,
called Forward Uncertainty Quantification (FUQ) (Kennedy and
O’Hagan, 2001), is the process of quantifying uncertainties in out-
puts. It focuses on the influence of the parametric (input) variabil-
ity on the outputs. The second part, called inverse uncertainty
quantification (IUQ) (Kennedy and O’Hagan, 2001), is a process of
estimating the values of unknown (input) parameters given exper-
imental measurements of a system and computer simulation
results. IUQ is usually ill-posed (Shrestha and Kozlowski, 2015),
because a unique solution might not exist. Common methods for
FUQ problems include Monte Carlo simulation, perturbation
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method, and spectral expansion method (Lee and Chen, 2009;
Robert and Casella, 2013; Mooney, 1997). Common methods for
inverse problems include Maximum-Likelihood Estimation (MLE),
Maximum A Posteriori (MAP), and Markov Chain Monte Carlo
(MCMC) (Shrestha and Kozlowski, 2015; Gelman et al., 2014;
McLachlan and Krishnan, 2007; Gilks, 2005).

The uncertainties of boundary conditions, initial conditions, and
geometry are usually determined by the experimental team, manu-
facturing tolerances, or sometimes are suggested by researchers
based on experience.With such information, FUQ can be done using
uncertainty analysis packages, such as DAKOTA (Giunta et al., 2007)
or RAVEN (Rabiti, 2012). However, uncertainties of physical models
are themost important and are difficult to obtain. This is because the
physical models closure relations are usually implemented as
empirical correlations directly in computational code and are not
available to the code user formanipulation.When these correlations
were originally developed, their accuracy and reliabilitywas studied
with particular experiments (Ishii, 1977; Ishii and Hibiki, 2010;
Kaichiro and Ishii, 1984; Zuber and Findlay, 1965). However, once
these correlations were implemented in thermal-hydraulics codes
(e.g. RELAP5 and TRACE) and used for different physical systems,
the accuracy and uncertainty information of these correlations
was no longer known to the code user. Therefore, quantifying the
accuracy and the uncertainties of the physicalmodels (correlations)
is of critical need, which is the objective of this work.

The rest of this paper is organized as follows. In Section 2 we
will develop a framework based on Bayes’ theorem to quantify
uncertainties in physical model parameters. Two algorithms,
MAP and MCMC, are developed. In Section 3 we will apply the
MAP and MCMC algorithms to BFBT benchmark data for assessing
uncertainties in subcooled boiling heat transfer coefficient and
interfacial drag (bubbly/slug) coefficient. In Section 4 we will sum-
marize the current methods and discuss potential extension.

2. Theory of parameter estimation

The parameter estimation algorithms are derived in Bayesian
analysis framework. The Bayes’ theorem, which relates the prior
distribution, likelihood function, and posterior distribution, is the
basis of the framework. A prior distribution of a random variable
is the probability distribution that expresses our experience about
the quantity before we observe some evidence; the likelihood of a
random variable is the probability of an event happens; a posterior
distribution of a random variable is the probability distribution that
expresses our knowledge based on observed evidence and prior
experience. Let X be the interested parameter, such as the heat
transfer coefficient, and consider X being a continuous random vari-

able. Let f ðx;~hÞ be the probability distribution function, where~h is a
parameter vector, such as the mean and variance. We need to for-

mulate a problem such that ~h contains uncertainty information
(e.g. mean and variance) for the random variable X (e.g. physical
model parameter). The prior distribution, likelihood, and posterior

distribution is denoted as pð~hÞ, Lð~hjxÞ, and pð~hjxÞ respectively.
The likelihood is expressed as,

Lð~hjxÞ ¼ f ðx;~hÞ ð1Þ
The prior distribution, likelihood, and posterior distribution are
related by Bayes’ theorem as,

pð~hjxÞ ¼ Lð~hjxÞpð~hÞR
Lð~hjxÞpð~hÞÞd~h

� KðxÞLð~hjxÞpð~hÞ ð2Þ

where, KðxÞ ¼ 1R
Lð~hjxÞpð~hÞÞd~h is the integration constant, which in prac-

tice is often difficult to obtain.

In this paper, X represents the physical model parameters of
interest. Ideally, we would like to observe them directly; however,
it is impossible to directly measure the physical model coefficients
in practice. The output quantities that we can observe/calculate in
an experiment/calculation are temperature, power, void fraction,
and pressure drop. These output quantities are deterministic func-
tions of the physical model parameters and contain the statistical
information of the physical model parameters. We need to formu-
late our algorithms in such a way that we can estimate the param-

eter vector of the physical model parameter (denoted as ~h) based
on observable output quantities (denoted as Y), such as void frac-
tion. Table 1 shows the notation of variables that are used in this
paper.

Consider ~Y being a function of vector ~X,

~Y ¼ Yð~XÞ ð3Þ

If we assume ~Y is a linear function of ~X, then when ~X is slightly per-
turbed around nominal value,

~Y ¼ ~Y0 þ A~X ð4Þ

where A is the sensitivity coefficient matrix, defined as A � @~Y
@~X
.

In the following derivation, the subscript i denotes the ith exper-

iment. For example, ~Yi denotes the output from the ith experiment.

For the vector ~X or ~Yi, a further subscript j denotes the jth element

of the vector. For example, Xj denotes the j
th physical model param-

eter and Yi;j denotes the jth output variable of the ith experiment.
If one considers the random error of an experimental measure-

ment, Eq. (4) becomes,

~Yi ¼ ~Y0;i þ Ai
~X þ~Ei ð5Þ

Note that for each measurement, the variables ~Y0;i;Ai;~Ei are differ-
ent because the experimental conditions are different. In this work,
the random error is assumed to be mean-zero and does not depend

on either ~X or ~Y .

We assume ~X follows a joint Gaussian distribution with mean

and covariance ð~lx;RxÞ. Because Eq. (5) is linear, ~Yi also follows a
joint Gaussian distribution and has the following properties.

~ly;i ¼ ~Y0;i þ Ai~lx ð6Þ

Ry;i ¼ AiRxA
T
i þ Re;i ð7Þ

f ið~y;~hÞ ¼ ð2pÞ�
dy
2 jRy;ij�

1
2exp �1

2
~y� ~ly;i
� �T

R�1
y;i ~y�~ly;i
� �� �

ð8Þ

where, dy is the dimension of ~Yi. Note that Eq. (8) requires Ry;i to be
non-singular. In practice, this condition is satisfied by using appro-
priately selected measurement data.

Table 1
Variable notation used in this paper.

Variables Meaning

~h Parameter vector of the physical model parameter, such as mean
and variance

~X Physical model parameter

~Y Output from experimental measurement

~Y0 Output from code prediction

~E Random error of experimental measurement

A Sensitivity coefficient matrix
~lx;Rx Mean and covariance matrix of physical model parameter
~ly;Ry Mean and covariance matrix of output
~le;Re Mean and covariance matrix of random error of experimental

measurement
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