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a b s t r a c t

In the derivation of the conventional set of point kinetics equations from the neutron transport equation,
one of the approximations used is to disregard the time variation of the neutron density current in com-
parison with the other terms resulting from the P1 approximation. When not considering this approxi-
mation it is obtained a modified set of point kinetics equations where new terms appear naturally
during the derivation. In this paper, the effect from considering the time variation of a neutron density
current in the calculation of reactivity is evaluated. The new expression obtained can be written as a cor-
rection function DqðtÞ to the reactivity conventionally calculated. For the different types of transients
simulated with the use of typical kinetic parameters in PWR reactors it was seen that, for those that have
an exponential behaviour, the correction DqðtÞ quickly reaches values that cannot be neglected.
Additionally, for this type of transient, it is possible to conclude that the reactivity calculated by the con-
ventional expression overestimates that which is obtained by the new formulation by a value propor-
tional to the argument of the exponential function.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The nuclear power distribution in a nuclear reactor implies inves-
tigating the neutron transport in a heterogeneous media and with a
strong neutron absorption, and these neutrons can also be scattered
by the target cores or escape from the active part of the reactor. The
approximation for neutron diffusion is still and largely used in sta-
tionary calculations to predict the neutron distribution and the crit-
ical boron concentration, despite the advances in computing that
allow solving the neutron transport equation through several meth-
ods. To deal with the movement of neutrons in a manner analogous
to that of heat diffusion requires the execution of several approxima-
tions in the transport equation which includes a weak angular
dependence on the angular distribution of the neutrons, isotropic
neutron sources, and disregarding the derivative for the neutron cur-
rent density, in comparison with other terms that appear in the neu-
tron transport equation (Duderstadt and Hamilton, 1976).

The transient situations found in a nuclear reactor can be pre-
dicted only through the modification of the neutron flux and, as
a result, it is possible to make a sufficiently precise forecast on
the consequences of the transients. It is enough to relate the mag-
nitude of the neutron flux, which varies in time, with the neutron

population in the core of a nuclear reactor (Henry, 1975). Point
kinetics equations relate these parameters and thus allow a study
of the transient situations that may occur in a nuclear reactor, and
their obtaining takes place from a sequence of approximations,
done from the neutron transport theory. Their obtaining can be
accomplished directly from the neutron transport equation, for
the neutron diffusion equation, or through a heuristic procedure,
according to Stacey (2007) and Henry (1975).

Some changes in the point kinetics equations have recently
been proposed. In Espinosa-Paredes et al. (2008) and Espinosa-
Paredes et al. (2011) a derivation is made of a model for fractional
point kinetics that uses equations for point kinetics with derivative
terms of a non-integer order, that is, adopting fractional derivatives
(Aboanber and Nahla, 2016; Espinosa-Paredes, 2016; Altahhan
et al., 2016). The calculation for the case of inserting a sinusoidal
reactivity for this model of fractional point kinetics is done in the
paper of Polo-Labarrios et al. (2014). In Quintero-Leyva (2015,
2016) a numerical solution is obtained for an integral–differential
formulation for classical point kinetics, eliminating the concentra-
tion of precursors and thus obtaining one single equation with one
single variable, even when considering six groups of precursors.
However, this paper will adopt the point kinetics formulation pro-
posed by Nunes et al. (2015) where the neutron current derivative
is not disregarded.
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Several papers are considered in the attempt to obtain the ana-
lytical solutions for classical point kinetics equations (Gonçalves
et al., 2015; Schramm et al., 2016; Palma et al., 2009) for the case
of a linear variation in reactivity during the start-up procedure of a
nuclear reactor. An analytical representation is determined by Leite
et al. (2014) for classical point kinetics equations with an adapted
time step. In Razak et al. (2015) the solution for point kinetics
equations is obtained via the method of differentiation for tempo-
ral exponentials from a Taylor series expansion.

In practice the use of point kinetics equations takes place in the
so-called inverse kinetics where the reactivity is obtained from a
nuclear power history (Duderstadt and Hamilton, 1976). There
are only a few problems for which it is possible to obtain an exact
analytical solution for neutron density given a specific reactivity.
Indeed, it is frequently more appropriate to invert the problem cal-
culating the reactivity that will determine the past behaviour for
the neutron density expressed from a direct relation with the
nuclear power. This procedure is more aligned with the nuclear
reactor control methodology according to Henry (1975) and
Suzuki and Tsunoda (1964).

Inverse kinetics provides a promising scenario considering
some relevant papers (Suescun et. al., 2012; Suescun et. al., 2013;
Antolin et. al., 2013; Malmir and Vosoughi, 2013). In Díaz et al.
(2008) a calculation for reactivity was performed using the Laplace
transformation and the FIR Filter. The inverse point kinetics equa-
tion is therefore solved from a method that uses a discrete version
of the Laplace transform. A new method to obtain reactivity is pro-
posed in the paper of Shimazu (2014), its main features being
robustness and simplicity, without the use of complex filters.

The goal of this paper consists on obtaining the reactivity for a
power history, considering the formulation proposed by Nunes
et al. (2015).

2. Modified point kinetics equations

The neutron transport theory is largely used to describe the
neutron flux in a nuclear reactor, described in terms of the angular

flux uð~r; EX̂; tÞ as follows, and according to Duderstadt and
Hamilton (1976), Stacey (2007) and Henry (1975).
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where the parameters are defined as follows: Cið~r; tÞ is the concen-

tration of precursors, vðEÞ is the speed of the neutrons, X̂ is the unit

vector towards the displacement of the neutrons, dX̂ is the unit
solid angle,

P
tð~r; E; tÞ is total neutron cross section,P

Sð~r; E0 ! E; X̂0 ! X̂; tÞ is the scattering kernel,
P

f ð~r; E0; tÞ is the fis-

sion cross section, tðE0Þ is the average number of neutrons produced
by fission caused by a neutron with energy E, viðEÞdE is the mean
number of neutrons produced in the fission that are born with
energy E in dE, b is the delayed neutrons fraction in relation to total

neutrons, bi is the share of delayed neutrons in the group i of pre-
cursors in relation to total neutrons, and ki is the decay constant
for precursor neutrons in group i.

Using the P1 approximation, which consists of expanding the
scattering kernel in Legendre polynomials to the second degree
as follows,
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and replacing in Eq. (1), we obtaining:
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After that one applies the operator
R
4pð�ÞdX̂ to Eqs. (4) and (2),

to obtain the spatial kinetics equations, that are:
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The following are defined:
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Eqs. (5) and (6) are re-written from the definitions of neutron
flux and neutron current density, as follows:
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