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a b s t r a c t

A new functionality of fuel depletion sensitivity calculations is developed as one module in a determin-
istic reactor physics code system CBZ. This is based on the generalized perturbation theory for fuel deple-
tion problems. The theory for fuel depletion problems with a multi-layer depletion step division scheme
is described in detail. Numerical techniques employed in actual implementation are also provided.
Verification calculations are carried out for a 3 � 3 multi-cell problem consisting of two different types
of fuel pins. It is shown that the sensitivities of nuclide number densities after fuel depletion with respect
to the nuclear data calculated by the new module agree well with reference sensitivities calculated by
direct numerical differentiation. To demonstrate the usefulness of the new module, fuel depletion
sensitivities in different multi-cell arrangements are compared and non-negligible differences are
observed. Nuclear data-induced uncertainties of nuclide number densities obtained with the calculated
sensitivities are also compared.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Accurate and reliable prediction of nuclide number densities
after fuel depletion is quite important in various applications in
the field of nuclear engineering, including safety analyses of
nuclear power plants and nuclear waste fuel management. Since
safety margins, which should be considered for various functional-
ities of nuclear systems, significantly affect construction and oper-
ation costs, an important issue is the quantitative evaluation of
accuracy and reliability. Uncertainty quantification (UQ) is one of
promising ways to fulfill this requirement; much research and
development of UQ has been conducted to date in the field of reac-
tor physics.

One of numerical procedures for UQ is the adjoint-based
method, in which sensitivities of observed (target) parameters
with respect to input parameters that include uncertainties are cal-
culated and input parameter-induced uncertainties are evaluated
by manipulation of the sensitivities and uncertainty information
on the input parameters. In the field of reactor physics, the pertur-
bation theory and the generalized perturbation theory (GPT) are
well established and implemented to application codes to calculate
the sensitivities of reactor physics parameters with respect to
nuclear data, which is a principal source of uncertainty. Fuel
depletion problems for heterogeneous systems are complicated

because they are coupled problems between fuel depletion and
neutron transport problems. A theory for these problems, GPT for
fuel depletion problems, however, has been established
(Williams, 1979; Takeda and Umano, 1985). While this theory
exists, actual implementation to lattice physics codes is quite rare.

A deterministic reactor physics code system CBZ, which has
been under development at Hokkaido University in Japan, has var-
ious functionalities for UQ, including fuel depletion problems for a
single fuel pin cell. In order to enhance this capability, a new fuel
depletion sensitivity calculation module has been developed and
implemented. The purpose of the present paper is to describe this
new CBZ functionality.

The present paper is organized as follows: Section 2 describes
the generalized perturbation theory for fuel depletion problems
and actual implementation. Sections 3 and 4 are devoted, respec-
tively, to the description of numerical procedures and results.
Finally, Section 5 provides the conclusions of the present study
and future perspectives.

2. Theory and implementation

2.1. General description of fuel depletion calculations

Generally in fuel depletion calculations, the fuel depletion per-
iod is divided into steps and each of the steps is further divided into
sub-steps. In the frame of the deterministic numerical procedure,
resonance self-shielding and neutron flux calculations are carried

http://dx.doi.org/10.1016/j.anucene.2016.06.013
0306-4549/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: go_chiba@eng.hokudai.ac.jp (G. Chiba).

Annals of Nuclear Energy 96 (2016) 313–323

Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier .com/locate /anucene

http://crossmark.crossref.org/dialog/?doi=10.1016/j.anucene.2016.06.013&domain=pdf
http://dx.doi.org/10.1016/j.anucene.2016.06.013
mailto:go_chiba@eng.hokudai.ac.jp
http://dx.doi.org/10.1016/j.anucene.2016.06.013
http://www.sciencedirect.com/science/journal/03064549
http://www.elsevier.com/locate/anucene


out at the beginning of each step; and the calculated multi-group
cross sections and neutron flux distributions are commonly used
during each step. At the beginning of each sub-step, neutron flux
distribution is normalized and fuel depletion during the sub-step
is calculated with the normalized neutron flux.

Let us consider a step which is divided into I sub-steps. The
beginning and end of sub-step i are denoted as ti and tiþ1, while
the beginning and end of this step are denoted as t0 and tI . Note
that sub-steps are denoted as 0;1; . . . ; I � 1.

Neutron flux distribution U at a particular step is defined as the
solution to the following neutron transport equation:

B0U ¼ A0 � 1
keff ;0

F0

� �
U ¼ 0; ð1Þ

where keff is the effective neutron multiplication factor, and A and F
are operators for neutron loss and production, respectively. The
subscript for keff and the operators describes the time at which
these are defined. The neutron flux distribution U is normalized
by the following equation:

mRf ;0U
� � ¼ Const: ð2Þ

Neutron flux distribution at sub-step i;/i, is assumed to be
proportional to U and is defined as

/i ¼ f iU: ð3Þ
The normalization factor f i is defined so as to satisfy the follow-

ing equation:

Gi/i ¼ f iGiU ¼ P; ð4Þ
where Gi is an operator for the normalization at sub-step i and P
denotes values of the normalization. We denote average of
energy-integrated value for U (average total neutron flux) in a fuel
region j as ~U j, which is defined as

~U j ¼
R
dE
R
r2j Uðr; EÞdrR
r2j dr

: ð5Þ

Total neutron flux in a region j at sub-step i; ~/ j
i , can be written as

~/ j
i ¼ f i ~U

j: ð6Þ
Let us assume that we consider a system in which there are J

fuel regions.
A number density vector in a region j at time t is denoted as

N jðtÞ. The number density vectors at t0;N
jðt0Þ, are given as an

initial condition. The fuel depletion equation in this region at
sub-step i is written as

dN jðtÞ
dt

¼ M j
iN

jðtÞ; ðti 6 t < tiþ1Þ: ð7Þ

The fuel depletion matrix in a region j at sub-step i;M j
i , can be

decomposed as follows:

M j
i ¼ Mk þM j

/
~/ j
i ¼ Mk þM j

/f i ~U
j; ð8Þ

whereMk andM/ are fuel depletion matrix components for radioac-
tive decay and neutron-nuclide reaction. Note that entries ofM/ are
composed of the one-group cross sections.

A fuel depletion equation for the whole system at sub-step i is
written as

dNðtÞ
dt

¼ d
dt

N1ðtÞ
N2ðtÞ

..

.

NJðtÞ

0
BBBB@

1
CCCCA ¼

M1
i 0 � � � 0

0 M2
i � � � 0

..

. ..
. . .

. � � �
0 0 � � � MJ

i

0
BBBB@

1
CCCCA

N1ðtÞ
N2ðtÞ

..

.

NJðtÞ

0
BBBB@

1
CCCCA

¼ MiNðtÞ; ðti 6 t < tiþ1Þ:

ð9Þ

2.2. Generalized perturbation theory for fuel depletion problems

Although several papers on GPT for fuel depletion problems
have been published and the theoretical detail of GPT has well
been documented (Williams, 1979; Takeda and Umano, 1985),
there are none that explicitly describe GPT for fuel depletion prob-
lems with a multi-layer depletion step division scheme consisting
of depletion steps and sub-steps.

Let us focus on the number density of nuclide k in region j after

fuel depletion, N j
kðtIÞ. The sensitivity of this quantity with respect

to arbitrary nuclear data r is defined as

S ¼ r
N j

kðtIÞ
dN j

kðtIÞ
dr ¼ r

N j
kðtIÞ

eT
ðj�1Þ�Kþk

dNðtIÞ
dr ; ð10Þ

where ej is a vector in which the jth entry is unity and others are
zero, and K denotes the number of nuclides in each fuel region.
The superscript T for vectors and matrices is for the transposition.

In order to calculate
dN j

k
ðtIÞ

dr in Eq. (10), vector wðtÞ, whose size is
the same as that of N, is multiplied to both sides of Eq. (9), both the
sides are integrated over the entire period ½t0; tI�, and then the
following equation is derived.Z tI

t0

wT dN
dt

dt ¼
XI�1

i¼0

Z tiþ1

ti

wTMiNdt;

wTN
� �tI

t0
¼
Z tI

t0

dwT

dt
Ndt þ

XI�1

i¼0

Z tiþ1

ti

wTMiNdt;

wTðtIÞNðtIÞ ¼ wTðt0ÞNðt0Þ þ
Z tI

t0

dwT

dt
Ndt þ

XI�1

i¼0

Z tiþ1

ti

wTMiNdt: ð11Þ

For simplicity, dependence of N andw on time in integrations is
omitted. Setting

wðtIÞ ¼ eðj�1Þ�Kþk; ð12Þ

as the final condition of wðtÞ, N j
kðtIÞ can be written as

N j
kðtIÞ ¼ wTðt0ÞNðt0Þ þ

Z tI

t0

dwT

dt
Ndt þ

XI�1

i¼0

Z tiþ1

ti

wTMiNdt: ð13Þ

By differentiating both sides of Eq. (13) by r, the following
equation is derived:

dN j
kðtIÞ
dr

¼
Z tI

t0

dwT

dt
dN
dr

dt þ
XI�1

i¼0

Z tiþ1

ti

wT dMi

dr
Ndt

þ
XI�1

i¼0

Z tiþ1

ti

wTMi
dN
dr dt: ð14Þ

The first and third terms in the right hand side (RHS) of Eq. (14)
disappear if the vector w is properly defined as described later.

Let us consider the second term in the RHS of Eq. (14). This can
be rewritten as

XI�1

i¼0

R tiþ1
ti

wT dMi
dr Ndt ¼

XI�1

i¼0

XJ

j¼1

R tiþ1
ti

w jT dM j
i

dr N jdt¼
XI�1

i¼0

XJ

j¼1

R tiþ1
ti

w jT @M j
i

@r N jdt

þ
XI�1

i¼0

XJ

j¼1

X
g

d~U j
g

dr

R tiþ1
ti

w jT @M j
i

@ ~U j
g
N jdt

þ
XI�1

i¼0

XJ

j¼1

R tiþ1
ti

w jT dfi
dr

@M j
i

@f i
N jdt;

ð15Þ

where ~U j
g denotes average neutron flux of group g in region j. The

first term in the RHS of Eq. (15) corresponds to direct effect of
nuclear data to fuel depletion matrix, and partial differentiation
@M j

i
@r can be easily calculated. The second and third terms correspond
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