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a b s t r a c t

The goal of this paper is twofold: (1) to show that time-variant reliability and a branch of control theory
called stochastic viability address similar problems with different points of view, and (2) to demonstrate
the relevance of concepts and methods from stochastic viability in reliability problems. On the one hand,
reliability aims at evaluating the probability of failure of a system subjected to uncertainty and
stochasticity. On the other hand, viability aims at maintaining a controlled dynamical system within a
survival set. When the dynamical system is stochastic, this work shows that a viability problem belongs
to a specific class of design and maintenance problems in time-variant reliability. Dynamic program-
ming, which is used for solving Markovian stochastic viability problems, then yields the set of design
states for which there exists a maintenance strategy which guarantees reliability with a confidence level
β for a given period of time T. Besides, it leads to a straightforward computation of the date of the first
outcrossing, informing on when the system is most likely to fail. We illustrate this approach with a
simple example of population dynamics, including a case where load increases with time.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This paper connects two lines of research, viability and relia-
bility, that have ignored each other up to now despite strong
similarities. Both frameworks study the potential for a system to
retain desirable properties. They were developed in different
contexts and sometimes tackle different specific technical or
conceptual issues in relation with the same type of problems,
which makes their confrontation promising. In particular, this
work focuses on showing how concepts and methods coming
from the so-called stochastic viability framework [1] are applicable
to time-variant reliability. Indeed, they foster the resolution of a
particular class of design and maintenance problems, that this
paper is to describe with accuracy.

Reliability theory initially comes from the field of mechanical
and structural engineering [2] and has a wide range of applica-
tions, from material science [3] and industrial maintenance [4] to
ecology [5], environmental management [6] and hydrology [7].
In these applications, different numerical methods enable the
estimation of the response surface and the associated probability
of a system to be in the so-called failure set. Reliability methods
provide ever-improving approximations of this probability of

failure in cases of growing complexity, and have been perfected
and tailored to an increasing number of applications [8,2,9]. Let us
cite for instance Monte Carlo methods, First and Second Order
Reliability Methods (FORM and SORM), or response surface
approximations. A central concern is often with understanding
and modeling the correlations between the different variables.

However, many of these developments deal with time-
invariant systems, since they are carried out under a single definite
period of time. When the system under consideration evolves in
time, the reliability problem is referred to as time-variant. The
central issue of representing the correlations between variables is
then extended to account for the time correlations of the processes
of interest. The probability of reaching the failure set during the
evolution is called the cumulative probability of failure. Rice's
formula [10], which counts the average number of times an
ergodic stationary process crosses a given fixed level, serves as a
basis for computing the cumulative probability of failure in the
outcrossing approach. This approach is based on the computation
and time integration of the outcrossing rate, i.e., the rate at which
the state reaches the failure set, e.g. [11]. It has been applied to
simple cases where analytical derivations are tractable [12,13] or
alongside approaches from time-invariant reliability such as FORM
[14], or finite elements methods [15].

Thus, bridges exist between the time-variant and -invariant
cases. In fact, some outcrossing algorithms decompose the time-
variant problem into a series of time-invariant ones [16,17,13], and
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conversely, the outcrossing rate has been defined on variables
other than time [15]. Some cases can even be solved both with the
outcrossing rate approach, and by having time as a parameter [18].
Other studies treat a time-variant problem like a time-invariant
one, by considering time as a parameter [19,20] or as yet another
space variable [21], or by treating a finite number of dates like a
series system [22].

Most of the works cited in the two paragraphs above assume a
monotonic decrease of performance with time. Such an assump-
tion is perfectly reasonable for structures that deteriorate as they
grow old, but recent time-variant reliability studies have ques-
tioned its systematic use, and suggest using methods that do not
require this hypothesis [23,24,21]. A second limitation of the
existing literature, linked with the assumption of a monotonic
decrease in performance through time, is the idea that mainte-
nance is the fact of choosing between a limited set of options
which essentially are equivalent to rejuvenating the system, e.g.
[12,14,25]. Without a monotonic decrease of performance, other
types of maintenance need to be taken into account. Besides, there
is no framework within the time-variant reliability literature that
formally considers design and maintenance together. Neverthe-
less, design and maintenance are closely related, since a system
should be designed in a way that allows for an appropriate
maintenance throughout its lifetime.

To address these current limits of time-variant reliability, this
work uses a stochastic controlled dynamical system formulation.
Non-controlled dynamics can be found in the time-variant relia-
bility literature [26,27,24], and the use of controls leads to a
general formulation for design and maintenance problems by
linking the acceptability of a design to the existence of a main-
tenance strategy such that reliability is guaranteed with a con-
fidence β, i.e., such that the cumulative probability of failure is
smaller than 1�β.

The link between the initial configuration of a system and the
existence of strategies that keep it out of a failure state are central
to viability theory [28,29]. This is a control theory that deals with
controlled dynamic systems under state constraints, and whose
original focus is on controlled deterministic systems. An emphasis
is put on finding the viability kernel, the set of all initial states
which can be controlled so that their trajectory is maintained
within the constraint set at all times. Viability algorithms generally
yield both the viability kernel and the associated viable controls at
once, e.g. [30–32]. Viability tools have been successfully applied to
a variety of fields such as finance, robotics, or ecology, e.g. [33].
Recent work has extended the framework of viability theory in
discrete time by considering uncertainties in the dynamics, lead-
ing to the definition of the stochastic viability kernel [34], a set of
states for which the respect of the constraints can be guaranteed
with a desired minimal probability and for a desired time frame.
Dynamic programming can compute stochastic viability kernels
and determine the control strategy that maximizes the probability
to maintain the system in the constraint set during that period [1].
This is the specific development which applicability to reliability
problems we propose to demonstrate throughout this work.

The paper is organized as follows. Section 2 introduces the
notion of reliability kernel to describe a time-variant design
problem. Then Section 3 extends this notion to a coupled problem
of design and maintenance through a controlled dynamical system
formulation. After that, Section 4 shows how the framework of
viability theory applies to a specific case of this coupled design and
maintenance problem, and solves it in the Markovian case. Section
5 proposes an application in order to illustrate how dynamic
programming can be applied to a reliability problem. The discus-
sion of Section 6 further argues about the potential of confronting
reliability with control theories such as viability. Finally, Section 7
summarizes the findings.

2. A design problem in time-variant reliability

This section proposes a general formulation for design pro-
blems in time-variant reliability, which comes from a similar
problem in time-invariant reliability.

2.1. Time-invariant reliability

Let us consider a system and a vector of n random variables X
which represents the system's state variables and their uncer-
tainty. Reliability is concerned with the performance function gðXÞ,
and with the so-called limit-state (or failure) surface defined by
[8,9]:

gðXÞ ¼ 0 ð1Þ
The limit-state surface separates the failure domain F (where
gðXÞo0) from the survival domain S (where gðXÞZ0). The object
of reliability is to determine the probability of failure pf of the
system:

pf ¼PðXAFÞ ¼PðgðXÞo0ÞÞ: ð2Þ

A diversity of methods have been developed to compute or
approximate the limit-state surface and the probability of failure
in the time-invariant case [8,9].

Choices regarding the design of the system may influence the
random vector X or the performance function. Without loss of
generality, the problem can be formulated so these choices only
affect the former. Let us represent choices by a fixed vector π
chosen in a space Π �Rm and mAN. Let us call design this vector:
each design leads to a distinct random vector XðπÞ. Then the
associated probability of failure pf ðπÞ is
pf ðπÞ ¼PðgðXðπÞÞo0ÞÞ: ð3Þ

This work focuses on finding values of π such that the system is
reliable with a confidence level β (i.e., a significance level
α¼ 1�β). In other words, we are interested in finding elements
from the set of design choices such that reliability is achieved with
a confidence β. Let us introduce this set as the reliability kernel,
noted RelπðβÞ and formally written as follows:

RelπðβÞ ¼ fπAΠjpf ðπÞr1�βg ð4Þ

For instance, Relπð0:99Þ is the set of available designs such that the
system has a 99% chance of being in the survival set S. Let us now
extend this design problem to the time-variant case.

2.2. Time-variant reliability

We now place ourselves between an initial date t0 ¼ 0 and final
date T, so that the problem is studied within a time interval [0,T]
called the planning period. The uncertainty and stochasticity of the
system are represented at all dates by the vector Xðt;πÞ. There is a
consensus in the reliability literature that Xðt;πÞ aggregates a
vector of random variables like in time-invariant viability, as well
as a vector of one-dimensional random processes that may be
correlated with one another as well as with the random variables
[14,17,35]. These processes may also be autocorrelated in time.

The performance of the system may also evolve with time, and
is now noted gðt;Xðt;πÞÞ. Likewise, the limit-state surface
gðt;Xðt;πÞÞ ¼ 0 may be dependent on time, and so may the failure
domain F(t) (where gðt;Xðt;πÞÞr0) and the survival domain S(t)
(where gðt;Xðt;πÞÞZ0).

Time-variant reliability is concerned with the cumulative
probability of failure pf ðt;πÞ, the probability of reaching the failure
set over [0,t]:

pf ðt;πÞ ¼Pð(τA ½0; t�;Xðτ;πÞAFðτÞÞ ð5Þ
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