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a b s t r a c t

This paper presents a model selection methodology for maximizing the accuracy in the predicted
distribution of a stochastic output of interest subject to an available computational budget. Model
choices of different resolutions/fidelities such as coarse vs. fine mesh and linear vs. nonlinear material
model are considered. The proposed approach makes use of efficient simulation techniques and
mathematical surrogate models to develop a model selection framework. The model decision is made
by considering the expected (or estimated) discrepancy between model prediction and the best available
information about the quantity of interest, as well as the simulation effort required for the particular
model choice. The form of the best available information may be the result of a maximum fidelity
simulation, a physical experiment, or expert opinion. Several different situations corresponding to the
type and amount of data are considered for a Monte Carlo simulation over the input space. The proposed
methods are illustrated for a crack growth simulation problem in which model choices must be made for
each cycle or cycle block even within one input sample.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic simulation plays a critical role in the prediction of
system performance and estimation of reliability in complex
engineering systems. In this context, the purpose of the simulation
is to propagate all available information forward to a system-level
output quantity of interest (QoI) while properly accounting for all
the uncertainties that are present at each level of the hierarchy.
Standard uncertainty propagation techniques result in a probabil-
ity distribution of the QoI which incorporates aleatory uncertainty
in the model inputs. An additional important need is to incorpo-
rate epistemic uncertainty arising from data and model uncertain-
ties into the distribution of the QoI. Data uncertainty arises from
sparse, imprecise, missing, subjective, or qualitative data, and also
from measurement and data processing errors. Model uncertainty
may arise due to model form assumptions, model parameters, and
solution approximations. Data uncertainty may also affect the
estimation of model parameters. If the various types of uncertainty
are represented in a probabilistic format, then the presence of
epistemic uncertainty leads to a stochastic model prediction even
for a given input vector. The amount of computation time required
to incorporate all the uncertainties may be very large when using
conventional methods such as Monte Carlo simulation (MCS) with
high fidelity system models. In some problems the required time
can become so large that the problem is completely intractable.

The situation explored in this paper is one in which a stochastic
simulation must be performed for the purpose of system-level
uncertainty quantification (UQ) and reliability analysis. A compre-
hensive analysis should accurately predict the full distribution of
an output QoI by including all known uncertainties. In such a case,
we assume that a high fidelity model already exists, but it is too
expensive to evaluate at every sample point. Once cheaper models
are developed, the high fidelity model is still available, but we
must decide when to use it efficiently in order to obtain results of
desired accuracy within a reasonable amount of time. With this
goal in mind, this paper develops a multi-fidelity model selection
methodology that combines the use of both efficient simulation
and surrogate modeling. The proposed framework uses surrogate
models to inform the model selection decision at each random
sample of the MCS (or each spatial location or time step, depend-
ing on the problem) and then executes a single selected model
combination at this input. In this way, we can account for the
possibility that different models may be adequate in different
domains (including cheaper vs. expensive models, and even
models with competing physical hypotheses). The proposed
methodology accommodates different types of information about
the QoI (such as actual observations, expert opinion etc.).

A simple mathematical example is first implemented to
demonstrate a situation in which no prior information is available
about the appropriate ranking of fidelities among candidate
models. In such a case, we must have additional information
about the QoI in order to define the relative accuracies in terms of
a discrepancy. Otherwise, we cannot make an informed decision
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based on computational effort alone. Next, a richer engineering
example is used to demonstrate the proposed methods for a more
complicated simulation where inputs vary both spatially and
temporally. Additionally, this second example establishes the
model selection approach for a case where the ranking of fidelities
among the candidate models is known a priori.

2. Background

There are two basic classes of approaches available to manage
computationally intractable UQ problems; either the number of
samples required can be reduced in an intelligent way, or the model
being evaluated can be simplified so that less time is needed for
each sample. Methods of efficient stochastic simulation with
respect to the number of samples have been explored in studies
on reliability analysis and design optimization. One inexpensive
way of propagating input variability and/or parameter uncertainty
through a system model is a first-order Taylor series expansion,
which requires only nþ1 function evaluations for n uncertain
variables. This method is referred to as a first-order second moment
(FOSM) approach in the reliability analysis literature [1]. Other
reliability analysis approaches take advantage of the idea that
sometimes only a particular point on the distribution of the QoI is
of interest (e.g., probability that stress or deformation exceeds a
particular value). This type of analysis typically uses Newton-like
optimization methods to search in an equivalent uncorrelated
standard normal space for the most probable point (MPP) on a
limit state related to the QoI [2,3]. The failure probability is then
approximated via the first-order reliability method (FORM) or the
second-order reliability method (SORM) [1].

Alternatively, within the context of MCS for reliability analysis,
methods such as importance sampling modify the sampling
distribution to ensure that more samples fall within a region of
interest, thereby reducing the total number of samples needed for
the analysis. For example, Harbitz's importance sampling approach
[4] creates a sampling distribution centered at the MPP; adaptive
methods are also available to update the importance sampling
distribution after ever few samples [5,6]. Because each of the
aforementioned approaches searches only in a region of interest,
they can be restrictive if the goal of the analysis is to determine the
entire distribution of the QoI. To calculate the entire distribution,
these methods may be applied at several regions of interest and
interpolated (note: interpolation introduces additional error and
uncertainty), or we must revert to a full MCS.

If a full MCS is to be performed, it may be infeasible to evaluate
a high-fidelity physics model (e.g. nonlinear finite element analy-
sis with a very fine mesh) for every Monte Carlo sample, so the
class of approaches aimed at reducing computation time per
sample is utilized instead. Cheaper models (in terms of CPU time
per evaluation) which may be in the form of mathematical
surrogate models (also referred to as response surfaces or meta-
models), reduced order models, or reduced physics models have
been pursued in this regard. Common surrogate models include
simple regression models, Gaussian process (GP) or Kriging mod-
els [7,8], polynomial chaos expansion models [9], support vector
machines [10], and neural networks [11]. However, additional
error is introduced to the system prediction by these surrogates,
so it is preferable to make selective use of the high-fidelity model
at some sample points as allowed by the computational budget. In
this case, there is a clear difference in fidelity between the full
model and the surrogate, and the decision only involves handling
the tradeoff between accuracy and computational expense.

On the other hand, there are also instances in which multiple
competing physics-based models are available for the same pre-
diction, but it is not obvious which of them represents reality more

accurately for the application of interest. For example, one physical
phenomenon may be more dominant in one region of the input
space than another. This situation has been addressed by quantify-
ing the discrepancy between the model prediction and some
performance benchmark [12]. Since it is not clear which model
is providing the better estimate of reality, this benchmark must
come from an additional piece of information, most commonly a
physical observation, known exact solution, or expert opinion.
After a benchmark is selected, the decision is again a tradeoff of
accuracy vs. computational expense. To develop a methodology for
model selection, it must first be clear whether the ranking of
fidelities among candidate models is consistent over the entire
domain or whether it may change as a function of the inputs. Once
this distinction is made, the goal is to select among available
models in an intelligent and efficient manner.

Given these various scenarios, the general model selection
problem can be posed as a decision based on one or more of the
following criteria: (1) parsimony vs. accuracy in regression, (2) dis-
crepancy compared to a benchmark, and (3) computational expense.
The problem of selecting among multiple regression models has
frequently been addressed by considering the first of these criteria. In
several existing metrics based on the information theory, accuracy is
indicated by the sum of squares of residuals or the maximum
likelihood with respect to training data, and parsimony is indicated
by the number of terms in the model. Both of these components are
included within Mallows' Cp statistic [13], the Akaike information
criterion [14] based on information entropy [15], the Bayesian infor-
mation criterion [16], and the minimum description length [17].
Each of these is addressing the tradeoff between bias and variance in
available models, since additional complexity will reduce the resi-
duals (i.e. variance) but also risks “overfitting”, which may increase
bias. Typically, the outcome of this problem is the choice of a single
model from a set, or possibly a new model which averages a set of
available models.

When the models are not statistical regression models, but
rather physics-based models, these metrics, based on the accuracy
vs. parsimony criterion, can be difficult and inappropriate to employ
for a couple of reasons. First, the forms of these models may be
complex and in some cases impossible to write in an analytical
form, so it will be difficult to define the parsimony of the model.
Second, different physical hypotheses may attribute different phy-
sical mechanisms as causes for the observed behavior, which makes
the associated models difficult to compare with respect to parsi-
mony, and they cannot be combined in a natural way. Therefore,
it is more appropriate to look only at model discrepancy and
computational expense when addressing this selection scenario.
The tradeoff between accuracy (w.r.t. a benchmark) and computa-
tional effort in physics-based models has been addressed in the
system design literature. It is possible to develop a more accurate
model by introducing additional phenomenological features (i.e.
improve the model form) and/or by improving the quality of the
numerical approximation to the solution (e.g. discretization refine-
ment). Available methods [18–20] assign utilities to the candidate
models based on expected performance and explore the tradeoff
between utility and the associated costs (both model building cost
and execution cost). The use of multiple models with varying
degrees of fidelity is also studied in the design optimization
literature; this is referred to as model management [21]. Lower
fidelity models to evaluate the objective and constraints include
surrogate models or reduced-order models [22,23].

This paper develops a model management framework for
uncertainty quantification, based on model discrepancy and com-
putational effort, in the presence of both aleatory and epistemic
uncertainty. Model discrepancy is probabilistically quantified for
different model choices and traded off against computational
effort to develop an optimization-based model selection criterion
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