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Nuclear power plants (NPPs) are designed in consideration of design basis accidents (DBAs). However, if
the safety injection system (SIS) is not working properly in a loss-of-coolant-accident (LOCA) situation, it
can induce a severe accident that exceeds DBAs. Therefore, it is important to properly actuate the SIS
before a DBA becomes a severe accident. If the SIS is not working in time, the reactor core may be uncov-
ered and the reactor vessel (RV) may be damaged. In this paper, we defined the golden time as the avail-
able time from an initial SIS malfunction for actuating the SIS to prevent reactor core uncovery and RV
failure. A support vector regression (SVR) model was applied to predict the golden time. The input vari-
ables and parameters of the SVR model were selected and optimized by using a genetic algorithm. The
data set of severe accident scenarios was obtained by using the Modular Accident Analysis Program
(MAAP) code. An optimized power reactor (OPR1000) was used for the simulations. It was shown that
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that the proposed SVR model could predict the golden time accurately.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

After the Three Mile Island accident in 1979 and the Fukushima
accident in 2011, safety problems at nuclear power plants (NPPs)
have emerged as a global concern. As a result, many countries
using nuclear energy are conducting research on the safety prob-
lems of NPPs. In addition, an interest in severe accidents has been
increasing (Han et al.,, 2003) and several researches acquiring
important information under a severe accident using artificial
intelligence methodologies have been conducted (Kim et al.,
2015; Park et al., 2014a,b).

NPPs are designed in consideration of design basis accidents
(DBAs). The failure of the safety injection system (SIS) in DBA con-
ditions such as a loss-of-coolant-accident (LOCA) may lead to seri-
ous accidents that exceed the DBAs. In addition, a nuclear reactor
can completely lose its cooling function owing to the failure of
complex safety systems. If the coolant required for heat removal
in the nuclear reactor is not properly supplied, the reactor core
can be uncovered and the reactor vessel (RV) can be damaged.
Therefore, the SIS must be able to operate properly before a severe
accident occurs (Choi and Park, 2014; Yoo et al., 2015).

The types of LOCA are classified by break size and position. In
the case of a large-break LOCA, the reactor coolant system (RCS)
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pressure decreases sharply. After reactor shutdown, the reactor
coolant pump (RCP) is stopped, and a high-pressure safety injec-
tion (HPSI) system is actuated immediately. However, in the event
of a medium- and small-break LOCA, the RCS pressure is slowly
reduced. Therefore, the low-pressure safety injection (LPSI) system
may not function properly, which can induce a serious accident. In
order to turn on the LPSI system properly, the operators must man-
ually open the power operated relief valves (PORV) (Han et al.,
2003; Choi and Park, 2014).

In this study, by using the support vector regression (SVR)
model, we predicted the golden time for SIS recovery that can
accomplish a reactor cold-shutdown and prevent RV failure when
the SIS was not operated normally. In addition, we also predicted
the golden time for preventing core uncovery and RV failure when
the SIS actuation is delayed. Mitigation of the accident will be
decided by actions that are carried out during the golden time.
Therefore, predicting the golden time is very important.

A genetic algorithm (GA) optimized the SVR model that was
used for golden time prediction. The GA is a useful method for solv-
ing optimization problems with multiple parameters. In this study,
a GA was used to select the input variables and optimize the
parameters of the SVR model. The data for golden-time prediction
were obtained from modular accident analysis program (MAAP)
code, and a variety of severe accident scenarios for an optimized
power reactor (OPR1000) were simulated. The MAAP code provides
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the function to adjust the break size and the break location such as
hot-leg or cold-leg and can also adjust the operation timing of the
SIS. The reactor core uncovery time and RV failure time according
to whether the SIS operates can be analyzed by using the MAAP
code (Yoo et al.,, 2015).

2. Support vector regression

A support vector machine (SVM) can be applied to classification
problems and regression analysis (Kecman, 2001). In this study, an
SVR method was used to predict the golden time for SIS recovery
under LOCA circumstances.

2.1. SVR method

The SVM yields prediction functions that are expanded on a
subset of support vectors (SVs). SVR is the most common applica-
tion form of SVMs. An SVR model nonlinearly maps the original
data into higher dimensional feature space and conducts linear
regression on the feature space. Fig. 1 shows the model structures
of the SVR model for data regression (Kong et al., 2015). The sym-
bol K in the rectangular blocks of Fig. 1 represents kernel functions
to be mentioned later.

In an SVR model, the functional variable y should be estimated
based on a set of independent variables x by a deterministic func-

tion. Hence, given a data set {(x;,y;)}', € R" x R, where Xx; is the
input vector for the SVR model, y; is the actual output value, and
N is the total number of data points used to develop the SVR model,
the SVR model output is based on the following regression function
(Kecman, 2001):
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The function ¢(x) is called the feature, and the parameters w
and b are, respectively, the weight and bias of the support vector.
After the input vector x is mapped into vector ¢(x) of a high
dimensional kernel-induced feature space, nonlinear regression
in the original input data space is turned into linear regression in
the feature space. These parameters can be calculated by minimiz-
ing the following regularized risk function:
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Fig. 1. Model structures for data regression (support vector regression).
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The first term of Eq. (2) is a weight vector norm, which charac-
terizes the complexity of the SVR models. The second term is an
estimation error. The parameters 4 and ¢ are user-defined parame-
ters, and |y; — f(x)|, is called the e-insensitive loss function, as
shown in Fig. 2 (Vapnik, 1995). The loss is equal to zero if the pre-
dicted value f(x) is within an error level . For all other predicted
points outside the error level ¢, the loss is equal to the magnitude
of the difference between the predicted value and the error level ¢
(see Fig. 2).

Fig. 3 shows parameters for an SVR method. Increasing the
insensitivity zone tends to increase the estimation error but
decrease the number of SVs, leading to data compression. In addi-
tion, as shown in Fig. 3, increasing the insensitivity zone has
smoothing effects on the modeling of highly noisy polluted data.

The regularization parameter /4 of Eq. (2) is used to ensure good
generalization of the SVR model. An increase in the regularization
parameter more penalizes larger errors, which tends to decrease
the estimation error. The estimation error can also be easily
reduced by increasing the weight vector norm of the first term of
Eq. (2). However, an increase in the weight vector norm does not
ensure good generalization of the SVR model. This generalization
property is of particular interest to data-based model development
because a good model performs well for non-training data as well
as training data.

In classical SVR, the proper value for the insensitivity parameter
¢ is difficult to determine beforehand. As before, to solve the opti-
mization problem with constraints of an inequality type, we must
find the Lagrange function of Eq. (2). Minimizing the regularized
risk function of Eq. (2) is equivalent to minimizing the following
constrained risk function:
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The constraints are as follows:
Yi—WeX) -b<e+d,
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The parameters & = [&; &, -- - &y)" and & = [&% &, - - - &;]" are the
slack variables that represent the upper and lower constraints on
the output of the SVR model. They are positive values (see Fig. 3).
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Fig. 2. Linear ¢-insensitivity loss function.
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