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a b s t r a c t

The Pennsylvania State University NEM code has been updated in an attempt to enable the code to model
more neutronically complex reactor cores, such as those containing mixed-oxide fuel, low leakage cores,
and cores that contain multiple burnable poison types. Current nodal methods, which are primarily
focused on solving the diffusion equation using a nodal expansion method with the transverse leakage
term solved using the quadratic leakage approximation, are known to be inaccurate in such environ-
ments. The NEM code is updated with a transport capability based upon the SP3 approximation, a
semi-analytical solution, and an advanced transverse leakage method based upon the use of analytic
basis functions. Each of these new features is described followed by the results of benchmarks to test
their effectiveness.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Modern reactor cores, such as those using mixed-oxide (MOX)
fuel, cores with extended operation in a deeply rodded condition,
low leakage cores, and those with multiple sub-batches with mul-
tiple burnable poison types, require more advanced analysis
methodologies due to the neutronic heterogeneity of such cores.
These advanced methodologies should address the inadequacies
of the methods used in most nodal codes currently in use: namely,
the inadequacy of the diffusion approximation in highly heteroge-
neous cores and near material boundaries and strong absorbers
such as control rods and burnable poisons, the limitations of the
polynomial nodal expansion method (NEM) in larger spatial nodes
with more complicated flux shapes and in areas where steep flux
gradients occur, as well as the inadequacy of the quadratic leakage
approximation (QLA) to be able to model complex leakage shapes.

Recent advances in the Pennsylvania State University (PSU)
Nodal Expansion Method (NEM) code have sought to address these
deficiencies by introducing a transport capability based on the SP3
approximation, a semi-analytical nodal expansion method (SA-
NEM) solution, and an advanced transverse leakage capability
(Thompson and Ivanov, 2014) based upon the use of analytic basis
functions (ABFs). This paper describes each of these new features
and provides the results of benchmarks to test their effectiveness.
Each of these improvements are generic enough to be applicable to

all geometries, including hexagonal, as well for the transient option
in NEM, which is being implemented and will be presented in
future work.

2. SP3 approximation

The Simplified PN (SPN) equations were first proposed in an
attempt to introduce additional transport effects into the standard
P1 equations without introducing the complexities and undesired
increase in runtime that a full transport theory solution would
entail. The PN equations in slab geometry, in an optically thick
medium dominated by scattering, may be written as a system of
planar diffusion problems in each direction, which can be solved
by Fick’s Law as is done in the diffusion theory approximation.

The spherical harmonic approximation (PN) to the neutron
transport equation is developed by expanding the angular depen-
dence of the neutron flux and the differential scattering cross sec-
tion in orthogonal Legendre polynomials up to order N. The
simplification from spherical harmonics to Legendre polynomials
comes from assuming azimuthal symmetry and material isotropy
of the scattering medium. More specifically, it is assumed that
the scattering medium is invariant under rotation in the phase
space R3, and therefore only depends on the cosine of the scatter-
ing angle. This amounts to assuming that the problem under con-
sideration can be approximated as planar transport with a highly
forward-peaked scattering kernel. This allows the PN equations to
be written in one dimension as:
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with /l being the flux moments, l = 0, 1, . . ., N, r is an arbitrary
spatial coordinate {r: r = x, y, z and r 2 Vnode} and G = energy group.
As is typically assumed in the PN equations, for l = 0 and l = N, /n�1

and /N+1 are assumed to be 0, Rt;g is the group g total macroscopic
cross section, Rs;l;g0!g is the lth moment of the macroscopic scatter-
ing cross section from group g0 into group g.

The isotropic source is defined as follows:

S0;gðrÞ ¼ 1
keff

vg

XG
g0¼1

mRf ;g0/0;g0 ðrÞ ð2Þ

where vg is the isotropic fission spectrum for group g, keff is the neu-
tron multiplication factor, and Rf ;g0 is the macroscopic fission cross
section for group g0.

The P3 equations are obtained from the PN equations above by
inputting l = 0, 1, 2, 3 into Eq. (1), which produces four linear differ-
ential equations for the four flux moments. Using the same
assumption as Brantley and Larsen (2000), that there is no aniso-
tropic group-to-group scattering, eliminates all group-to-group
scattering terms higher than l = 0. However, Beckert and
Grundmann (2007) have reported fairly large errors in pin-by-pin
SP3 calculations in which anisotropic group-to-group scattering
was completely neglected. Due to these conclusions from Beckert
and Grundmann (2007), in which first-order anisotropic group-
to-group scattering was considered in the DYN3D code and found
to provide significantly better results, only scattering orders higher
than l = 1 were eliminated from the P3 equations (for group-to-
group scattering). Therefore, linearly anisotropic group-to-group
scattering is considered in NEM. This is shown in Eq. (3) below.
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where, Rn
s;l;g0!g ¼ 0 for g0 – g; l ¼ 2;3.

To arrive at the simplified P3 equations (SP3) from Eqs. (3a)–(3d)
above, a few simplifying assumptions/substitutions are made:

(1) The total macroscopic cross section minus the first scatter-
ing moment is replaced with the transport cross section in
the first equation above:

Rtr;gðrÞ ¼ Rt;gðrÞ �
XG
g¼1

Rs;1;g!g0 ¼ Rt;gðrÞ � l0;gðrÞRs;0;gðrÞ ð4Þ

where l0;gðrÞ is the average cosine of the scattering angle.
This assumption is equivalent to the transport correction of the

diffusion theory and is based upon the assumption:
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This approximation has been shown to be fairly accurate in dif-
fusive environments with weak absorption.

(2) The even flux moments are assumed to be scalars, while the
odd flux moments are assumed to be vectors. Pomraning
discusses this in more detail is his paper (Pomraning,
1993), and this assumption was utilized by Brantley and
Larsen (2000) as well. From a more mathematically rigorous
standpoint, the higher order flux moments are in fact higher
order tensors, but we nonetheless retain the convention.

(3) The removal cross section is introduced, which is equal to
the total cross section minus the within group scattering
cross section as follows:

Rrem;l;g ¼ Rt;g � Rs;l;g!g for l ¼ 0;2;3 ð5Þ
(4) The synthesized flux approximation is implemented for the

scalar flux and second flux moments as follows:

U0;gðrÞ ¼ /0;gðrÞ þ 2/2;gðrÞ ð6Þ
Using the aforementioned approximations and Eqs. (3a)–(3d),

the next step in the derivation is to solve for the odd flux moments
in terms of the spatial derivatives of the even flux moments. The
following is then obtained:
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These two equations are then inserted into Eqs. (3a) and (3c)
above. The approximation made by Brantley and Larsen (2000) to
extend the utility of the SP3 equations to three dimensions was
then applied. Brantley and Larsen replaced the second derivatives
in the PN equations with the Laplacian operator. After doing this,
and performing some simplifications, the SP3 equations as they
are implemented in NEM can be obtained:
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2.1. Marshak boundary conditions

The only remaining parameter to be determined is the boundary
condition. The exact boundary condition (using the x dimension as
an example), as described by Marchuk and Lebedev (1986), is:

/ðxright;lÞ ¼ 0 for l < 0 ð9Þ

/ðxleft;lÞ ¼ 0 for l > 0

Since this exact boundary condition cannot be completely satis-
fied based on the angular flux approximation afforded by the
Legendre polynomials, Marshak (1947) proposed to use the same
Legendre polynomial expansion for the angular flux as in the PN
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