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a b s t r a c t

The least-squares method based on three-dimensional coupling coefficients (LS-3DCC) was tested to
determine its capability for replacing the three-dimensional coupling coefficients (3DCC) method for
reconstructing the power distribution of ACP-100 which is a kind of small modular reactor (SMR). In
the LS-3DCC method, the power distribution reconstruction problem is regarded as an inverse problem,
and the Tikhonov regularizing operator constructed by coupling coefficients is used to alleviate the ill-
posedness. Some power distribution pairs are generated to compare the LS-3DCC method and the
3DCC method, and the comparison results show that the LS-3DCC method performs better than the
3DCC method.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Core power distribution monitoring in operating power reactors
is very important in core surveillance, the 3-D power distribution is
one of the basic operation parameters which can determine many
other important parameters such as power peaking factor,
enthalpy rising factor and quadrant tilt ratio used to evaluate the
operation condition of reactor and the safe margin. The economy
of reactor could be optimized if the real time 3-D power distribu-
tion is well obtained and used for surveillance and regulation. Most
commercial power reactors in operation are equipped with fixed or
movable in-core neutron detectors to obtain power distribution
information. Many kinds of on-line monitoring systems, such as
BEACON (Boyd and Miller, 1996) and GNF-ARGOS (Tojo et al.,
2008), have been developed to estimate in-core power distribu-
tions using fixed in-core detectors. The detector results at certain
locations reflect the actual reactor flux or power can be applied
to improve the results of the only diffusion calculations.

Several computational methods have been proposed for power
or flux mapping. The CANDU on-line flux mapping system (Tang
and et al., 1978) converts the 102 vanadium detector signals to
thermal fluxes at the detector sites and then maps out the 3D flux
distribution by a process of least-squares fitting of the measured

thermal fluxes to a linear expansion of pre-calculated flux modes.
Combustion Engineering (CE) nuclear power plants use the cou-
pling coefficient (Karlson, 1995) (CC) method to estimate the
power distributions, and the pre-calculated two-dimensional cou-
pling coefficients are used. Jang (Jang and et al., 2004) proposed a
3-Dimensional coupling coefficient (3DCC) method and Webb
(Webb and Brittingham, 2000) proposed a Lagrange multiplier
method, which both can be regarded as an improved version of
the CC method. Lee and Kim (2003) proposed a least-squares
method by combining the coarse mesh finite difference (CMFD)
form of the fixed-source diffusion equation and the detector
response equation to form an over-determined linear equation.
The idea of least-squares method is intuitive, and the reconstruc-
tion results of this method are accurate. But there is a drawback
of this method that it can be used only with neutronics design
codes based on finite difference method or CMFD method while
many neutronics design codes are based on nodal methods with-
out CMFD acceleration.

In this study, the least squares 3-Dimensional coupling
coefficient (LS-3DCC) method is proposed which can be used with
any neutronics design code. The detector response equations are
formed into matrix form and the power reconstruction problem
is regarded as an inverse problem which is ill-posed. The Tikhonov
regularization technique (Tarantola, 2005) is used to solve this
ill-posed problem, and the regularizing operator is constructed
by coupling coefficients. This new method is compared with
3DCC, and some useful results are obtained.
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2. Methodology description

The purpose of this paper is to discuss the research investigat-
ing the LS-3DCC method for estimating power, and how it com-
pares to the 3DCC method. Both methods are based on coupling
coefficients, and these two methods are introduced sequentially.

2.1. 3DCC method

In 3DCC method, each node power is determined from the
power coupling coefficients. Usually, one axial detector box may
include a few neutronics calculation nodes. The height of one
detector is much larger than that of a neutronics node and the
heights of neutronics nodes can be adjusted to make sure the
height of one detector is the sum of the heights of neutronics nodes
exactly. And in 3DCC method, the power of each single neutronics
calculation node belonging to a detector box is utilized. The power
of a neutronics node belonging to a detector box can be reproduced
from the corresponding detector box power using a power sharing
factor as shown in Eq. (1):

PM
l;k ¼ Fl;kk0D

M
l;k0 ð1Þ

where k0and k are axial indices for the detector box and the neu-
tronics node separately, l is the radial index for the assembly, the
superscript ‘‘M” means the measured power, PM

l;k = measured power

of neutronics node (l, k), DM
l;k0 = measured power of detector box

(l, k0), and Fl;kk0 = power sharing factor from detector box (l, k0) to
neutronics node (l, k). Fig. 1 shows the indexing rule of the neutron-
ics node and detector box using a small reactor as an example under
an assumption that assembly No. 1 is instrumented, and one detec-
tor box occupies two neutronics node in this example.

In-core detector signals can be converted into detector box
power through the following equation using the ‘‘signal to power”
conversion factor:

DM
l;k0 ¼ IMl;k0Wl;k0 ð2Þ

where IMl;k0 = measured detector signal of detector box (l, k0),
Wl;k0 = signal to power conversion factor of detector box (l, k0). The
signal to power conversion factor Wl;k0 can be calculated from
fine-mesh, multi-group diffusion theory (Webb and Brittingham,
2000).

The power sharing factor can be approximated by:

Fl;kk0 � FC
l;kk0 ¼

PC
l;k

DC
l;k0

¼ PC
l;kP

k2Kðk0ÞP
C
l;k

ð3Þ

where FC
l;kk0 = approximated power sharing factor, PC

l;k = node power

calculated by the neutronics code, DC
l;k0 = detector box power calcu-

lated by neutronics code, K(k0) = axial index groups of neutronics
nodes occupied by detector box (l, k0), and the superscript ‘‘C”
means calculated. The power of detector box can be defined as
the summing powers of neutronics nodes if one detector box occu-
pies several neutronics nodes as shown in Fig. 1.

A non-instrumented node power can be determined using the
neighboring powers and the 3D coupling coefficients which are
defined by the ratio of the sum power of the face adjacent neigh-
boring nodes to the power of a node (l, k) as Eq. (4):

Cl;k ¼ 1
Pl;k

XNRl

i¼1

PlðiÞ;k þ
XNAk

j¼1

Pl;kðjÞ

 !
ð4Þ

where Cl,k = power coupling coefficient at node (l, k), NRl = number
of radial neighboring nodes to node (l, k), NAk = number of axial
neighboring nodes to node (l, k), l(i) = radial index of the ith radial
neighboring nodes to node (l, k), and k(j) = axial index of the jth
axial neighboring nodes to node (l, k). The power coupling coeffi-
cient can be determined using 3D neutronics calculation as Eq. (5)
by assuming that there isn’t difference between real 3DCCs and cal-
culated 3DCCs:

Cl;k ¼ CC
l;k ¼

1
PC
l;k

XNRl

i¼1

PC
lðiÞ;k þ

XNAk

j¼1

PC
l;kðjÞ

 !
ð5Þ

Because the calculated 3DCCs can be provided by the neutronics
calculation beforehand, the power of the non-instrumented node
can be solved by Eq. (6):

CC
l;kPl;k �

X
ðlðiÞ;kÞ2Uðl;kÞ

PlðiÞ;k �
X

ðl;kðjÞÞ2Uðl;kÞ
Pl;kðjÞ

¼
X

ðlðiÞ;kÞ2Iðl;kÞ
PM
lðiÞ;k þ

X
ðl;kðjÞÞ2Iðl;kÞ

PM
l;kðjÞ ð6Þ

Groups U(l, k) and I(l, k) mean the non-instrumented and instru-
mented neighboring node groups of node (l, k), respectively. If
node (l, k) doesn’t have instrumented neighbor, then I(l, k) is a null
set and right hand side of Eq. (6) is zero. Eq. (6) is applied to all the
nodes and can be expressed as the following matrix–vector form:

APU ¼ SI ð7Þ
where A = coupling coefficient matrix, PU = vector of non-
instrumented node powers, and SI = source vector from detected
node powers or zero.

2.2. LS-3DCC method

In LS-3DCC method, instead of using Eq. (1) to get the relation-
ship between the measured node power and the measured detec-
tor power, a more accurate and direct relationship can be utilized
as Eq. (8):X
k2Kðk0 Þ

PM
l;k ¼ DM

l;k0 ð8Þ

where K(k0) means the set of axial indexes of neutronics nodes
which belong to the k0 th axial detector box. The usefulness of Eq.
(1) depends on the accuracy of the estimated FC

l;kk0 because Eq. (3)
is an approximation equation, while Eq. (8) is accurate uncondition-
ally due to the definition of power of detector box. To check the use-
fulness of Eq. (1), Eq. (1) can be transformed into:

PM
l;k

DM
l;k0

� PC
l;k

DC
l;k0

ð9Þ
Fig. 1. Indexing rules of neutronics node and detector box.
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