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a b s t r a c t

A semi-Markov setting is considered in order to study the main dependability measures of a repairable
continuous time system under the hypothesis that the evolution in time of its components is described
by a continuous time semi-Markov process. Moreover, the main dependability measures of a periodically
maintained system are studied. Finally, all the above systems are compared with the corresponding
Markov systems where the general repair time distribution is replaced by the exponential distribution
with the same mean which is the most commonly used approximation of the original system in practice.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A main engineering problem is the study of system's depend-
ability. Many system's dependability studies are based on Markov
processes (see for example [1–4] the references therein and many
others), basically due to the fact that a plenitude of known results
on Markov processes exist and are also easy to implement. The
main disadvantage of the use of Markov processes is that they do
not allow any other distribution for the sojourn times beyond the
exponential one. A natural generalization of the Markov processes
is the semi-Markov processes that allow any distribution for the
sojourn times. This is an important generalization since in most
real world applications the lifetimes and/or the repair times are
not exponentially distributed. In the standard Markov analysis
when we have several independent Markov processes, the vector
process consisting of them is also a Markov process on the product
state space whose generator is given by the direct Kronecker sum
of the partial process generator. But this is not the case in the
semi-Markov processes. A vector process consisting of semi-
Markov processes is not any more a semi-Markov process. This
is the main inconvenience of semi-Markov systems.

In this paper our main goal is to study the main dependability
measures of existing repairable systems (or subsystems) of which
the evolution in time of each component is described by a
continuous time semi-Markov process (CTSMP) based on the
standard theory of semi-Markov processes [5]. The studied sys-
tems can be applied to signaling, telecommunication and several
other fields. We consider here that the lifetime and repair times of

each component are independent. The lifetime distribution of each
component is exponential, while its repair time has a general
distribution. In digital electronics, assuming that a constant failure
rate is not at all unrealistic because there is generally no wear-out.
Each component can be either in the functioning state or in the
failure state. Moreover, we would like to compare the studied
systems with the corresponding Markov systems where the
general repair time distribution is replaced by the exponential
distribution with the same mean which is the most commonly
used approximation of the original system in practice.

The rest of the paper is organized as follows. In Section 2, a
two-component parallel system is presented and studied exten-
sively. In Section 3 we study a two-component periodically
maintained system. This dependability study is generalized in a
(n�1)-out-of-n system. Finally, in Section 4, the studied systems
are compared with the corresponding Markov systems. We con-
clude this paper by providing a short discussion.

2. Reliability of semi-Markov systems

In this section we will present and study a two component
parallel system. This system appears in several real word applica-
tions. For example, it can describe successfully a two channel
communication system that needs at least one of the two channels
to be operational in order to function properly. If one channel is
lost then the system is vulnerable and the loss of the second
channel implies loss of service. A stand-by redundancy is not very
convenient for several types of industrial applications, such as
train control, because, in these architectures, upon failure of the
first channel, a switch-over time would be necessary in order to
activate the spare channel. So, this implies downtime. If it was
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possible to constantly monitor the main channel and activate a
spare (reserve) channel instantly upon failure of the main one,
then indeed a cold redundancy would be more “efficient”.

The two component parallel systems have been studied by
several authors and under different assumptions. Gaver [6,7]
studied a two component parallel system assuming that each
component has an exponential failure time distribution and a
general repair time distribution. Osaki [8], Linton [9] and Sub-
ramanian and Ravichandran [10] generalized Gaver's study. Ohashi
and Nishida [11] studied Gaver's model in the particular case
where both components are identical and all the distributions are
general. Variations of Gaver's model have been presented and
studied in several papers such as Buzacott [12], Takeda and Osaki
[13], Jank [14], Vanderperre [15], Rajamanickam and Chandrasekar
[16], and the references therein.

The point here is that the two component parallel systems are
studied under a semi-Markov setting. Based on the well-known
results on CTSMP, explicit formulas for the main reliability mea-
sures are derived.

2.1. The system

Let us consider a two component parallel system. The lifetime
distribution of each component is an exponential distribution εðλÞ
with common failure rate λ, while its repair time has a general
distribution Gð�Þ (Dirac, Lognormal and Weibull are some of the
most common distributions employed for the repair time). More-
over, we assume that there is only one repair station and the
repaired components are as good as new. Thus, this system can be
in one of the following states:

� State 0: Both components are operating.
� State 1: One component is operating and the repair of the other

component has just started.
� State 2: The operating component fails while the other compo-

nent is under repair (the system is not functioning any more).

Let us now assume that λ0 ¼ 2λ and λ1 ¼ λ are the (constant)
failure rates of the two components parallel system when it is in
states 0 and 1 respectively. Moreover, let fZtgt ≥ 0 be the process
that describes the evolution in time of the studied system, with
state space E¼ f0;1;2g. We will study the process fZtgt≥0 up to the
first hitting time to the state 2, that is T2 ¼ infftZ0 : Zt ¼ 2g. In
this case, the process fZtg0 ≤toT2

is a semi-Markov process, with
semi-Markov kernel:

Q ðtÞ ¼
0 Q01ðtÞ 0

Q10ðtÞ 0 Q12ðtÞ
0 0 0

2
64

3
75:

In order to specify the kernel of the semi-Markov process, we
need to compute the Qij(t) for i; jAE. For example, Q10ðtÞ is the
probability of a transition from state 1 to state 0 up to time t. This
is true, if the repair of the one component takes place before the
failure of the operating one. The repair time is a random variable
T10 distributed according to the cumulative density function G(t). If
a failure occurs earlier than a repair, the system transits from state
1 to state 2. This time is a random variable T12 which is
exponentially distributed, εðλ1Þ. Thus, the probability Q10ðtÞ can
be determined as the probability T10rt and the random variable
T10 is less than the variable T12. Hence, we have that

Q10ðtÞ ¼ PðT10rt and T124T10Þ

¼
Z t

0
GðduÞ

Z 1

u
λ1e�λ1s ds¼

Z t

0
GðduÞe�λ1u:

Similarly we can obtain Q12ðtÞ. Thus, we have that

Q01ðtÞ ¼ 1�expf�λ0 tg; Q10ðtÞ ¼
Z t

0
expf�λ1 ugGðduÞ;

Q12ðtÞ ¼
Z t

0
λ1 expf�λ1 ugGðuÞ du:

The transition kernel of the embedded Markov chain ðJnÞnZ0 is

P¼
0 1 0
p 0 1�p

0 0 1

2
64

3
75; where p¼

Z 1

0
expð�λ1 uÞGðduÞ:

The mean sojourn time mi in state i is mi ¼
R1
0 tHiðdtÞ ¼R1

0 ð1�HiðtÞÞ dt, where HiðtÞ ¼∑jAEQijðtÞ is the cumulative distri-
bution function of the sojourn time in state i. In this case, we have
m0 ¼ 1=λ0; and m1 ¼

R1
0 ð1�H1ðtÞÞ dt, where H1ðtÞ ¼Q10ðtÞþQ12ðtÞ.

In order to compute the main dependability measures, we will
divide the states of the system into two subsets, the functioning
and failed ones. Denote by U the operational states of the system
(the up states) and by D the subsets of failure states (the down
states), i.e. E¼U [ D, with U \ D¼∅; Ua∅ and Da∅. It is clear
in this case that U ¼ f0;1g and D¼ f2g. We consider now the
natural matrix partition of the matrices Q ðtÞ and P corresponding
to the state space partitions U and D. Thus, we have

Q ðtÞ ¼
Q 11ðtÞ Q 12ðtÞ
Q 21ðtÞ Q 22ðtÞ

" #
and P¼

P11 P12

P21 P22

" #
;

where Q 11ðtÞ and P11 are the restriction of the semi-Markov kernel
and of the transition kernel of the EMC into the subset U,
respectively. Let us also assume that the system starts to work in
the perfect state. Thus, the initial distribution is a¼ ð1;0;0Þ and
the truncation of it in U is a1 ¼ ð1;0Þ.

Let us assume that the system starts to work at time t¼0 and
the event fZt ¼ i; iAUg means that the system is in the operating
mode i at time t. The reliability of the system at time t is defined as
the probability that the system has been functioning without
failure in the interval ½0; t�, that is
RðtÞ ¼ PðZsAU; 8sA ½0; t�Þ:
If we define the conditional reliability by

RiðtÞ ¼ PðZsAU; 8sA ½0; t�jZ0 ¼ iÞ; iAU;

then for any initial distribution a, we have RðtÞ ¼∑iAUaiRiðtÞ. It is
obvious that RjðtÞ ¼ 0 for tZ0, if jAD. The conditional reliability
Ri(t) satisfies the following Markov Renewal Equation (MRE):

RiðtÞ ¼ 1�HiðtÞþ ∑
jAU

Z t

0
QijðdsÞRjðt�sÞ: ð1Þ

Eq. (1) can be approximated by

RiðtÞ � 1�HiðtÞþ ∑
jAU

∑
k

ℓ ¼ 1
Rjðt�xℓÞðQijðxℓÞ�Qijðxℓ�1ÞÞ;

where 0¼ x0ox1o⋯oxk ¼ t, which can be used recursively in
order to obtain Ri(t), starting from an initial point Rið0Þ ¼ 1 (see [5]).
Moreover, Eq. (1) can be written in matrix form as follows:

RðtÞ ¼ ðI�H1ÞðtÞ1s1 þQ 11nRðtÞ ð2Þ
where 1s1 is a s1-column vector whose elements are all equal to
unity. Solving the MRE (2), we get that the reliability of the system
at time t, starting at time 0 in a functioning state, is

RðtÞ ¼ a1ðI�Q 11Þð�1Þ
nðI�H1ÞðtÞ1s1

where the matrix convolution product is denoted by n, I is the
identity element for the matrix convolution product, i.e.
InA¼ AnI¼ A and Að�1Þ is the inverse of A with respect to convolu-
tion. One way to compute the matrix ð1�Q 11ðtÞÞð�1Þ is by explicit
inversion within convolution algebra. This is obtained by the usual
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