Reliability Engineering and System Safety 131 (2014) 291-297

Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress Ciame

E RELIABILITY
ENGINEERING

& SYSTEM
SAFETY

On selection of optimal stochastic model for accelerated life testing

P. Volf*, J. Timkova

@ CrossMark

Institute of Information Theory and Automation, UTIA, Pod vodarenskou vezi 4, 18208 Praha 8, Czech Republic

ARTICLE INFO ABSTRACT

Available online 2 May 2014

Keywords:
Reliability analysis
Accelerated life test
Cox's model

AFT model
Goodness-of-fit
Martingale residuals
Bayes statistics
MCMC

This paper deals with the problem of proper lifetime model selection in the context of statistical
reliability analysis. Namely, we consider regression models describing the dependence of failure
intensities on a covariate, for instance, a stressor. Testing the model fit is standardly based on the
so-called martingale residuals. Their analysis has already been studied by many authors. Nevertheless,
the Bayes approach to the problem, in spite of its advantages, is just developing. We shall present the
Bayes procedure of estimation in several semi-parametric regression models of failure intensity. Then,
our main concern is the Bayes construction of residual processes and goodness-of-fit tests based on
them. The method is illustrated with both artificial and real-data examples.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Accelerated life testing is a standard approach to gather
information on the survival time of highly reliable devices. One
of the goals of statistical analysis consists in the construction of a
model of the time to failure dependence on the ‘stressor’ (in a
quite wide sense). As a rule, the stressor is taken as a covariate in
a regression model of the lifetime. The model should be selected in
such a way that the information obtained under the over-stress
could be extrapolated to standard stress conditions. These pro-
blems, including the test design, selection of models, procedures of
statistical analysis, have been treated in a number of papers and
books, for instance [9,10,4,5]. Nowadays, many authors prefer the
Bayes approach, though mostly in the framework of parametrized
(e.g. Weibull) models. Simultaneously, computations are sup-
ported by the Markov Chain Monte Carlo (MCMC) generation of
posterior and predictive distribution, as in Van Dorp and Mazzuchi
[14]. In the same context, Erto and Giorgio [6] accent the
advantage of utilization of prior information, an experience from
past tests as well as the expert knowledge. Wang et al. [16] model
and analyze the process of degradation, instead of failure times
directly, using a Gauss or gamma process as a baseline source of
uncertainty. They provide the Bayes method and the MCMC
procedure enabling one to combine accelerated laboratory tests
with field data in order to analyze the reliability of system.

The selection of a proper stochastic model is just one of the
steps of statistical analysis. The model criticism, including the
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goodness-of-fit tests, should follow. Therefore, the methods of
goodness-of-fit statistical testing are in the center of our attention.
In the present paper we consider three basic semi-parametric
regression models describing the dependence of intensity of fail-
ures on covariates, in our context on the load, stress or other
conditions of usage.

In the framework of intensity models for lifetime data, the
goodness-of-fit tests are often based on the analysis of residual
process (martingale residuals). The residual process is defined as a
difference between estimated cumulated intensity and observed
counting process of failures (see for instance [3]). Hence, the
residual process is constructed from the observed data, its proper-
ties depend on the properties of the estimator of the cumulated
hazard rate. In a case without regression, as well as in Aalen's
additive regression model, residual processes are the martingales
[15]. In some other cases, as is Cox's model or the accelerated
failure time (AFT) model, the behavior of estimates, and therefore
of residuals, is more complicated. That is why the tests are often
performed just graphically [1]. Approximate critical regions for
tests can also be obtained by random generation from asymptotic
distribution of residual processes. Relevant theoretical results can
be found for instance in Andersen et al. [3], Lin et al. [11], and
Bagdonavicius and Nikulin [4]. In such cases, the Bayes approach
can offer a reasonable alternative, especially when connected with
the MCMC methods (an overview of the MCMC is given for
instance in [7]). The present paper deals prevailingly with semi-
parametric intensity models consisting of a parametric regression
part and a nonparametric baseline hazard rate. For the Bayes
solution, its representation can be made from piecewise-constant
functions (or from splines or from other functional basis), in the
way used in Arjas and Gasbarra [2]. Once a posterior sample of
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hazard rate (i.e. representation of its posterior distribution
obtained by the MCMC procedure) is available, we can construct
a sample representing cumulated intensities and corresponding
residuals.

Let us here also recall another approach to the Bayes analysis in
the AFT model. It utilizes logarithmic model formulation. Instead
of the baseline hazard rate of a baseline survival time Ty it deals
with the density for log To. Often, its prior is constructed as a
mixture of the Gauss densities with weights given by Dirichlet
distributions (as for instance in [8]). However, complications are
caused by censoring and have to be overcome by an additional
generation of would-be non-censored values, i.e. by a data
augmentation. It is actually a randomized version of the EM
algorithm.

The present paper has the following structure: In the next
section, the notion of martingale residuals is recalled, then the
Bayes nonparametric approach to intensity modeling is described.
While these sections are more-less introductory, the core of the
paper lies in Sections 4-6 dealing with regression models, methods
of analysis and their Bayesian counterparts. Utilization of the MCMC
procedures leads to the Bayes ‘empirical’ construction of residual
processes. The method is finally, in Section 7, illustrated with both
artificial and real-data examples.

2. Martingale residuals

In order to introduce the notion of martingale residuals, we
shall first consider a standard survival data case, without any
dependence on covariates. Let us imagine that a set of i.i.d. random
variables T;, survival times of n objects of the same type, is
observed. Alternatively, we may consider their counting processes
Nj(t), each having maximally 1 count (at the time of failure, T;), or
being censored without failure. Further, let us also consider
indicator processes (of being at risk) Yj(t), Y;(t)=0 after failure
or censoring, Y;(t)=1 otherwise. As the lifetimes are i.i.d., corre-
sponding counting processes have the same common hazard rate
h(t) > 0. The cumulated hazard rate is then H(t)= fg h(s) ds. It
follows that the intensity of N(t) is a;(t)=h(t) - Y;(t). Notice a
difference between those two notions: the hazard rate is a
characteristic of distribution, namely here h(t)= —d(In F)(t)/dt,
where F(t)=1—F(t) is a survival function, complement to the
distribution function, while the intensity depends on realizations
of processes Yj(t). It is assumed that the data are observed on a
finite time interval t [0, T], N;(0) = 0.

Let us also define sums of individual characteristics, namely
counting process N(t)= Y_,N;(t) counting number of failures,
further Y(t)=X!"_,Yi(t), cumulated intensities A;(t)= jg ai(s) ds
and A(t) = X'_ ,Ai(t), so that here A(t) = fé h(s)Y(s) ds.

In theoretical studies on lifetime models, many results are
based on martingale—compensator decomposition of counting
process, namely that N;(t) = A;(t)+ M;(t), so that also N(t) =A(t)+
M(t), where M;(t) and M(t) are martingales with zero means,
conditional variance processes (conditioned by corresponding
filtration, a nondecreasing set of o-algebras #(t~)) are
(M;)(t) =Ai(t) and (M)(t) = A(t). Naturally, martingales have non-
correlated increments, and M(t) are also non-correlated mutually
(for different i).

Then it is quite reasonable to consider a residual process
(martingale residuals)

R(t) = N(t)—A(t) = M(t) +A(t) —A(t)

as a tool for testing model fit. Here A(t) is the estimated cumulated
intensity. Hence, the residual process is constructed from the
observed data, and its properties depend mainly on the properties
of the estimator of the cumulated hazard rate, because

A(t)= [;Y(s) dH(s). Tests are then performed either graphically
or numerically, critical borders for assessing the goodness-of-fit
are based on the asymptotic properties of estimates.

2.1. Properties of residuals

The most common estimator of cumulated hazard rate H(t) is
the Nelson-Aalen estimator, which has the form

po P& dNis)  [TdN(s)
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so that it is a piecewise constant function with jumps dH(s) =
dN(s)/Y(s) at times where failures have occurred. Its asymptotic
properties, namely uniform on [0, T] consistency in probability and
asymptotic normality when n— oo, are well known (for review of
survival analysis, see for instance [10]). More precisely, the
following convergence in distribution on [0,T] to the Brown
motion process @ holds

Lh(s) ds

Co(s)
where we assume the existence of cy(s) = P—lim Y(s)/n, uniformly
in [0,T], co(s) =€ > 0. Hence, it is possible to construct Kolmo-
gorov-Smirnov type confidence bands for H(t) as well as point-
wise confidence intervals. Again, a consistent, uniformly in [0, T],
estimator of V(t) is available: V(t) = fé n dN(s)/Y(s)%.

In the present contribution we are interested mainly in the
properties of residual process R(t)= N(t)—A(t). Notice that here
A(t) = N(t) directly, so that it is preferred to construct residuals in
data subsets (strata), S c {1, ..,n}. Thus, let us define
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Rs(t) = Ns(t) — As(t) = Ms(t) +As(t) — As(t),

where we denote again N(t) = Y7_ | Ni(t), Ns(t) = ¥; e sNi(t), similarly
for Y(t), M(t), A(t),A(t). As
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we obtain that (with notation S — complement of S)
tdM(r) tdMs(r)Y5(r) — dMg(n)Ys(r)
Ysn= [ .
Y(r) Y(r)

From its structure it follows that the process Rs(t) has non-
correlated increments, conditioned variance (by o¢-algebras
F(t~)) of (1/4/n) dRs(t) is
dH(t) Cs(t)cs(t)
ny(t)? co(t)
where we again assume that there exist P-limits Ys(t)/n— cs(t),
Yz(t)/n—cs(t), Y(t)/n—co(t), uniform in te[0,T], bounded away
from zero. Then (1//N)Rs(t)—9B(Vg(t)), ie. it converges to the

Brown motion process, too, and the asymptotic variance function
Vi(t) is consistently estimable by

Vr(t) = / tdA (NYs(MYz(r) _ /f dN(r)YS(r)Yg(r).
0 0

Rs(t) = Ms(t) -

(Ys(OYs(0)* +Ys(6)*Ys(t) ~ dH(t)

ny(r ny(ry?*
Hence, if assumptions of our model hold, the process
1 Rs(t)
V(14 V(D)

should behave asymptotically as the Brown bridge process. It can
be tested by the Kolmogorov-Smirnov criterion (or other similar
criteria, as is the Cramer-von Mises test). Therefore, in such a
simple case of survival model without any non-heterogeneity,
the method can be used for assessing the model fit in different
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