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Nonparametric predictive inference for system reliability has recently been presented, with specific
focus on k-out-of-m:G systems. The reliability of systems is quantified by lower and upper probabilities
of system functioning, given binary test results on components, taking uncertainty about component
functioning and indeterminacy due to limited test information explicitly into account. Thus far, systems
considered were series configurations of subsystems, with each subsystem i a k-out-of-m;:G system
which consisted of only one type of components. Key results are briefly summarized in this paper, and as
an important generalization new results are presented for a single k-out-of-m:G system consisting of
components of multiple types. The important aspects of redundancy and diversity for such systems are
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1. Introduction

Lower and upper probabilities generalize the standard theory
of (‘single-valued’ or ‘precise’) probability and provide a powerful
method for uncertainty quantification, see Utkin and Coolen [12]
for an introductory overview from the perspective of reliability
theory and applications and many further references. The main
idea is that, for an event A, a lower probability P(A) and upper
probability P(A) are specified, such that 0 < P(A) < P(A) < 1, with
classical precise probability appearing in the special case with
P(A) = P(A). Like precise probability, lower and upper probabilities
have different possible interpretations, including a subjective
interpretation in terms of buying prices for gambles. Informally,
a lower probability P(A) can be interpreted as reflecting the
evidence in support of event A, which makes focus on lower
probability for system functioning natural and attractive in relia-
bility studies, we use this as the reliability measure of interest
throughout this paper. For completeness, however, we also present
the corresponding upper probability P(A), which can be inter-
preted by considering that 1—P(A) reflects the evidence against
event A, so in support of the complementary event A, The lower
and upper probabilities presented in this paper are naturally
linked by the conjugacy property P(A)=1-P(A) [1]. Zio [15]
mentions the need for research into quantification of uncertainty
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in reliability by means of representations other than probability
distributions. The lower and upper probabilities in NPI, as used in
this paper, are optimal bounds on probabilities resulting from
making only few assumptions. They enable statistical inference
that can be considered ‘objective’ in a way that is not possible
when restricting to classical probabilities [3].

Coolen [2] presented lower and upper predictive probabilities
for Bernoulli random quantities, based on an assumed underlying
latent variable model, with future outcomes of random quantities
related to data by the assumption A, introduced by Hill [6]. These
lower and upper probabilities are part of a wider statistical
methodology called ‘Nonparametric Predictive Inference’ (NPI),
which is a frequentist statistical approach with strong consistency
properties [1], see Coolen [3] for an overview and further refer-
ences (see also www.npi-statistics.com).

Coolen-Schrijner et al. [5] presented NPI for system reliability,
in particular for series systems with subsystem i a k;-out-of-m;:G
system. Such systems are common in practice, and can offer the
important advantage of building in redundancy by increasing
some m; to increase the system reliability. Coolen-Schrijner et al.
[5] considered the situation where each subsystem consists of
components of a single type, with different subsystems having
different types of components. They applied NPI for Bernoulli data
to such systems, with inferences on each subsystem i based on
information from tests on n; components, where the tested
components are assumed to be exchangeable with the corre-
sponding components to be used in that subsystem. Only situa-
tions where components and the system either function or not
when called upon were considered, we make the same assumption
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throughout this paper. They presented an attractive algorithm for
optimal redundancy allocation, with additional components added
to subsystems one at a time, which in their setting was proven to
be optimal. Hence, NPI for system reliability provides a tractable
model, which greatly simplifies optimization problems involved
with redundancy allocation. However, they only proved this result
for tests in which no components failed. MacPhee et al. [9]
generalized this result to redundancy allocation following tests
in which any number of components can have failed, a situation in
which redundancy plays possibly an even more important role
than when testing revealed no failures at all.

Coolen et al. [4] considered NPI for system reliability in a
similar setting, but with all subsystems consisting of the same
single type of component. This is non-trivial, as the random
quantities representing whether the components in the system
function or not, are not independent in the NPI approach, given
the test results. It is important that this dependence is explicitly
taken into account, in particular when there is relatively little
information from tests. We refer to Coolen-Schrijner et al. [5] for a
discussion of this important aspect that seems often to be over-
looked in reliability textbooks and applications, and which can
lead to substantial mistakes in estimating system reliability.

This paper presents a further important step in the develop-
ment of NPI for system reliability, where more general system
structures can be considered. Whilst restricting attention to a
single k-out-of-m:G system, this can now consist of multiple types
of components. They are assumed to all play the same role within
the system, but with regard to their reliability components of
different types are assumed to be independent. The information
from tests is also available per type of component.

Many recent contributions to the literature focus on reliability
of systems related to those considered in this paper, albeit from a
classical perspective using precise probabilities to quantify uncer-
tainty. For example, Torres-Echeverria et al. [11] address modelling
of probability of dangerous failure on demand and spurious trip
rate of safety instrumented systems that include k-out-of-m voting
redundancies in their architecture. Moghaddass et al. [10] consider
a general repairable k-out-of-m:G system with non-identical
components that can have different repair priorities. They address
the problem of efficient evaluation of the system's availability in a
way that steady state solutions can be obtained systematically
with reasonable computation time. Vaurio [13] considers the
unavailability of redundant standby systems with k-out-of-m logic.
Such systems are subject to latent failures that are detected by
periodic tests and repaired immediately after discovery. He con-
siders many potential failure and error modes in the formalism,
evaluates both consecutive and staggered testing schemes and he
suggests methods for including common cause failures in the
analyses. Further aspects of dependence of failures and the effect
on system reliability are studied through simulations by Lin et al.
[8]. Levitin [7] proposes a model that generalizes linear consecu-
tive k-out-of-r-from-m systems to linear n-gap-consecutive k-out-
of-r-from-m:F systems. He presents an algorithm for system
reliability evaluation that is based on an extended universal
moment generating function. Xing et al. [14] consider phased-
mission requirements, with different numbers of components
required to function at the different phases of the mission. These
recent papers are evidence of the continuing importance of
development of methodology to quantify system reliability, the
NPI approach presented here provides the important opportunity
to reflect, by the use of lower and upper probabilities, the fact that
information from tests is often quite limited.

It is quite straightforward to combine the results presented in
this paper with processes, considering reliability over time and
based on test data consisting of failure times. One can just define
as success the event that a component functions at age t, which

then enables prediction of system reliability at a future time t, and
this can be done for all t of interest to create nonparametric lower
and upper survival functions for the system reliability. Although
conceptually straightforward, this requires further research to
enable important additional aspects to be included in the frame-
work, including above-mentioned issues such as dependence
between failures and phased missions. Furthermore, as testing is
often required under severe time constraints, this provides excel-
lent opportunities to combine this approach with methods and
models for accelerated life testing, where the actual test informa-
tion, typically from tests under increased levels of stress on the
components, must be transformed to equivalent information
reflecting the realistic stress levels prior to being embedded as
data in the NPI approach in order to achieve the important
exchangeability of failure times observed in testing and for the
components in the system for which the reliability is to be
predicted. As such an exchangeability assumption is necessarily
subjective, so based on the judgements of experts with regard to
the specific system, the usually subjective nature of the relevant
judgement about the appropriateness of this assumption following
transformation of data which are originating from accelerated life
testing will form a natural component of the overall modelling
assumptions that must be made in addition to, and not directly
based on, available data. These topics make clear that there are
many interesting research challenges and opportunities to further
link the presented NPI approach with important practical aspects
of system reliability.

Section 2 of this paper provides a brief introduction to NPI for
system reliability. In Section 3 the main results of this paper are
presented, namely the NPI lower and upper probabilities for
functioning of a k-out-of-m:G system with multiple types of
components. Section 4 presents examples to illustrate these lower
and upper probabilities, and to discuss some specific related
features including diversity. Section 5 concludes the paper with
some remarks on planned further development of NPI for system
reliability and related research challenges.

2. NPI for system reliability

Suppose that there is a sequence of n+m exchangeable
Bernoulli trials, each with ‘success’ and ‘failure’ as possible out-
comes, and data consisting of s successes in n trials. Let Y] denote
the random number of successes in trials 1 to n, then a sufficient
representation of the data for the inferences considered is Y| =s,
due to the assumed exchangeability of all trials. Let Y 1" denote
the random number of successes in trials n+1 to n+m. Let
Ri={ry,....1¢}, with 1<t<m+1 and O<ri<ry<--<re<m.
Then the NPI upper probability for the event Y} 11" € R;, given data
Y] =s, for se{0,...,n}, is [2]

-1
= n-+m ¢ n—s+m-—r;
P(ngTeRrw';:s):( ; ) qu( 0 ’)

j=1

with ACy =(¢+") and AG =T —("7"), 2<j<t. The corre-
sponding NPI lower probability is derived via the conjugacy
property P(YprT' eRi|Y]=5)=1-P(Y; T eR{|Y]=s), where
R{ =1{0,1,...,m}\R;. Coolen [2] derived these NPI lower and upper
probabilities through direct counting arguments. The method uses
the appropriate A, assumptions [6] for inference on m future
random quantities given n observations, and a latent variable
representation with Bernoulli quantities represented by observa-
tions on the real-line, with a threshold such that successes are to
one side and failures to the other side of the threshold.

Under these assumptions, the ("*™) different orderings of these
observations, when not distinguishing between the n observed
values nor between the m future observations, are all equally
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