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This paper introduces a quick method for improving the accuracy of Monte Carlo simulations by gener-
ating one- and two-dimensional cross sections at a user-defined temperature before performing trans-
port calculations. A finite difference method is used to Doppler-broaden cross sections to the desired
temperature, and unit-base interpolation is done to generate the probability distributions for double dif-

ferential two-dimensional thermal moderator cross sections at any arbitrarily user-defined temperature.
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The accuracy of these methods is tested using a variety of contrived problems. In addition, various bench-
marks at elevated temperatures are modeled, and results are compared with benchmark results. The
problem-dependent cross sections are observed to produce eigenvalue estimates that are closer to the
benchmark results than those without the problem-dependent cross sections.
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1. Introduction

Cross-section files are generally provided in Evaluated
Nuclear Data Format (ENDF) formatted data files (Trkov et al.,
2011) that contain all of the necessary data to create continuous
energy (CE) data libraries for use in a Monte Carlo calculation. To
be useful, these ENDF data files are generally processed by a
cross-section processing code such as AMPX (Dunn and Greene,
2002) or NJOY (MacFarlane and Muir, 2000) for use in a
radiation transport code such as CE-KENO (Hollenbach et al,
2011). For one-dimensional cross sections, the data are usually
provided at one temperature (designated as 0K), and need to
be Doppler-broadened to various temperatures before they can
be used at reactor-level temperatures.

Exact Doppler-broadened cross sections can be done by the
nuclear data-processing codes using Doppler broadening equations
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(Cullen et al., 1973); however, producing exact cross sections at a
large number of temperatures would consume a significant
amount of time and space, both in memory and on a hard disk.
Therefore, cross-section libraries are generally only created at sev-
eral different temperatures; for KENO, part of the SCALE code suite
(ORNL, 2011), there are generally six temperatures created. For
KENO in CE mode, if the temperature desired is not one of the pre-
generated temperatures, then the closest temperature is used. A
case containing materials that are 50 K away from a library tem-
perature can produce significantly different results when com-
pared with a case that is using the temperature-corrected cross
sections.

Two-dimensional cross sections are generally provided for ther-
mal moderators in order to account for crystalline effects
encounted when neutrons are traveling at thermal speeds. Unlike
the one-dimensional cross sections, the ENDEF files are usually pro-
vided at a variety of temperatures. However, no Doppler broaden-
ing is done on these temperatures, so the end result is the same: If
a temperature desired by the user is sufficiently far from the
library temperatures, errors in the eigenvalue estimates can occur.
Some previous work has been done to provide for on-the-fly (OTF)
Doppler broadening of one-dimensional neutron cross sections
(Yesilyurt et al., 2009; Yesilyurt et al., 2012; Brown et al., 2012;
Martin et al., 2013; Trumbull, 2006) in other Monte Carlo codes.
For example, MCNP6 (X-5 Monte Carlo Team, 2003) ships with a
utility to generate fits to cross-section data so that cross sections
can be calculated on-the-fly for any temperature as desired. KENO
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previously had no such capability to Doppler broaden cross
sections.

In this paper two methods are discussed to temperature-correct
the provided cross sections. A finite difference method is employed
for the one-dimensional cross sections. This method is much faster
than the exact Doppler-broadening method developed by Cullen
and can use the data libraries that have already been created. For
two-dimensional thermal moderator data, a simple unit-base
interpolation scheme is used on the probability distributions of
the double differential cross sections. By combining the aforemen-
tioned methods with temperature interpolation on the probability
tables covering the unresolved resonance range (such as in Walsh
et al. (2015)), KENO will have temperature-corrected neutron cross
sections for all energy regions of interest (Hart et al., 2014).

2. One-dimensional method

For one-dimensional cross sections the approach to be imple-
mented into KENO utilizes a finite-difference method similar to
that used by SAMMY (Larson, 2008), which is well suited for reso-
nance analysis and light water reactor (LWR) applications. This
approach is based on the Leal-Hwang scattering method (Leal
and Hwang, 1987), in which the Doppler broadened cross sections
satisfy a heat equation of the form
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where F is the function of interest (in this case the cross section), u
is the energy range, and { is the temperature. Then, because of the
initial condition F(u,0) for —co < u < co and the boundary condi-
tions F(oo,{) = F(c0,0) and F(—oo,() = F(—o00,0), the function F
can be calculated using the finite-difference method.

The application of the finite-difference method solves Eq. (1) by
applying an explicit finite-difference formalism assuming constant
meshes with éu = h and 6¢ = ). The first and second derivatives can
then be expanded in a Taylor’s series. Thus the explicit finite-
difference equation for the function F at any u; and {j,; is
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where s = h—2 and a ===, The finite-difference equation in Eq. (2)
can be modified for nonuniform meshes as
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where s = ﬁ,a =12 5y, = v; — v;_1,60; = Vi1 — v;, and v; is the
momentum at the ith grid point.

Selecting a AT that is small (such as 1 K) allows for agreement
within 0.1% to reference cross sections across all energies except
for very low and very high energies. The increase in error at the
edges of the energy range is due to limitations in the finite-
difference method. Because each element in the energy grid uses
the surrounding elements to calculate the new value, the finite-
difference method produces poor cross-section estimates when
surrounding elements are inaccurate or do not exist. In an attempt
to alleviate these errors, extra points can be added past the known
energy range. This reduces the error for cross sections at very high
and very low energies by extrapolating the known cross-section
data but does not eliminate it completely.

Doppler broadening is controlled by the dbx parameter in
KENO. By setting dbx to 1, the finite difference approach is enabled.
Fig. 1 show the results of using the finite-difference method to
obtain cross sections for the 238U scattering reaction at 900 K near
the low-energy tail. As previously discussed, the error in the tail
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Fig. 1. 28U scattering cross sections showing a tail.

region quickly disappears as one moves away from the energy
boundary.

As seen in Fig. 1, the error at the low-energy tail can approach
10%. Although the error probably has little effect on the results,
it would be beneficial to try and minimize it. One solution is to
use linear interpolation for the first five momentum points on
the energy grid. Since there are no resonances in this extremely
small energy range, doing so would not introduce any errors into
the broadened cross sections. By using interpolation for the first
ten points, the results from Fig. 1 using the FDM converge onto
900 K reference results.

An example of this approach is shown in Fig. 2 for '60. In Fig. 2
(a) there is a large error (approaching 10%) in the lower tail region.
This contrasts sharply with the lack of error in the rest of the
energy space, although there is a small error when the finite differ-
ence method is used in the resonances. In Fig. 2(b) the error has
mostly disappeared and is less than 0.2% in the tail region. The rest
of the energy range is mostly unaffected by the change.

Another problem may arise when dealing with isotopes that do
not have a large resonance structure, are light, or have some other
small irregularites. One example is 'H in water, which contains no
resonances and also isn’t smoothly decreasing around 0.01 eV. This
slight bump causes an instability in the finite difference method as
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