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a b s t r a c t

In all nuclear reactors some neutrons can be absorbed in the resonance region and, in the design of these
reactors, an accurate treatment of the resonant absorptions is essential. Apart from that, the resonant
absorption varies with fuel temperature due to the Doppler broadening of the resonances. The thermal
agitation movement in the reactor core is adequately represented in the microscopic cross-section of
the neutron-core interaction through the Doppler broadening function. This function is calculated
numerically in modern systems for the calculation of macro-group constants, necessary to determine
the power distribution of a nuclear reactor. It can also be applied to the calculation of self-shielding
factors to correct the measurements of the microscopic cross-sections through the activation technique
and used for the approximate calculations of the resonance integrals in heterogeneous fuel cells. In these
types of application we can point at the need to develop precise analytical approximations for the
Doppler broadening function to be used in the calculation codes that calculate the values of this function.
However, the Doppler broadening function is based on a series of approximations proposed by
Beth–Plackzec. In this work a relaxation of these approximations is proposed, generating an additional
term in the form of an integral. Analytical solutions of this additional term are discussed. The results
obtained show that the new term is important for high temperatures.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The thermal nuclei movement is well represented in the neu-
tron–nuclei interaction through the Doppler broadening function
and interference term function (Duderstadt and Hamilton, 1976).
Considering an average thermal balance at temperature T where
the target nuclei are in movement and their velocities given by
the Maxwell–Boltzmann distribution (Lamarsh and Baratta,
2001), the expressions for the cross-section of radioactive capture
near any isolated resonance with an energy peak from the Briet–
Wigner formalism is written by:
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and A is the mass number, T is the absolute temperature, E is the
energy of incident neutron, ECM is the centre-of-mass energy, E0 is
the energy where the resonance occurs, C is the total width of
the resonance as measured in the lab coordinates, v is the neutron
velocity module, CD = (4E0kT/A)1/2 is the Doppler width of reso-
nance, vr = |v � V| is the module of the relative velocity between
neutron movement and nucleus movement and v th ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT=A

p
is

the velocity module for each target nucleus.
Eq. (2) can be found in reference (Duderstadt and Hamilton,

1976) and usually from three proposed approaches for Beth–Plac-
zek, only the first integral remains, generating the conventional
Doppler broadening function w(x, n) well established in the
literature:
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where the following are defined:

y ¼ 2
C
ðECM � E0Þ ð4:aÞ
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Eq. (3) is obtained by taking into account the following approx-
imations as proposed by Beth–Placzek.

Approximation 1: one neglects the second exponential in Eq.
(2), given that (v + vr)2 >> (v � vr)2.

Approximation 2: to extend the lower limit for integration
down to �1 in Eq. (2), given that the ratio between the energy
of neutron incidence and the practical width is large.

Approximation 3: being ECM the energy of the system in the
centre-of-mass system and E the energy of the incident neutron,
the following relation is always met:
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This paper will obtain an analytical expression for the second
term in Eq. (2), with denoted additional term wa(x, n), in the case
the first approximation of Beth–Placzek (BP1) be relaxed:
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In the next section Eq. (5) will be presented.

2. Mathematical formulation

For a heavy nucleus, the following approximation for the
reduced mass of the system is valid:
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From Eqs. (5) and (7), it is possible to write:
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From Eq. (8) and bearing in mind that v th ¼
ffiffiffiffiffiffiffiffiffiffiffi
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In Eq. (9), and bearing in mind that near the resonance E � E0 , it

is possible to recognise the term CD. From Eqs. (4.a) and (4.b) it is
possible to write:

ð3xþ yÞ ¼ 2
C
ð3Eþ ECM � 4E0Þ ) ð3Eþ ECMÞ ¼ C

2
ð3xþ yÞ þ 4E0:

ð10Þ
Thus, in replacing Eq. (10) into Eq. (9), one has the following

expression:
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Finally, in applying the second approach of Beth–Placzek, the

additional term wa(x, n) can be written thus:
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In contrast to the Doppler broadening functionw(x, n), where all
parameters of the nuclear resonance to be studied are contained in
the variable n, Eq. (12) explicitly shows in its functional form A, C
and E0. In the next section an analytical formulation for Eq. (12)
will be proposed.

3. An analytical formulation for wa(x, n)

In order to obtain an analytical expression for Eq. (12) it is con-
venient to define the following constants:

k1 ¼ 1
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This way, Eq. (12) can be written in a more convenient way:
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Thus, integral Eq. (14) acquires a form similar to Eq. (3), which
has a well-established and known solution. There are several
approximations in the literature to calculate the function w(x, n)
as the 4-pole Padé approximation (Keshavamurthy and Harish,
1993), Fourier series (Gonçalves et al., 2012) or Binomial expansion
(Mamedov, 2009) amongst other methods (Campos and Martinez,
1987; Campos and Martinez, 1989; Gonçalves et al., 2008; Palma
et al., 2006; Ferran et al., 2015). In the present paper the Frobenius
Method has been selected as it has been shown to be simple, accu-
rate and fast (Campos and Martinez, 1987; Campos and Martinez,
1989; Gonçalves et al., 2008; Palma et al., 2006). From the analyt-
ical expression proposed by Palma et al. (2006) for the calculation
of the Doppler broadening function w(x, n),
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being /ðx; nÞ ¼ erf inx�n
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It is possible to use Eq. (15) to obtain an analytical formulation
for the additional term wa(x, n) as Eqs. (3) and (14) are very similar
in their functional forms. For that, it is necessary to make the fol-
lowing mathematical associations between Eqs. (3) and (14):

x ! �k2 ð16:aÞ

n ! 2
ffiffiffiffiffi
k1

p
n: ð16:bÞ

Thus, after some algebraic work using Eqs. (16.a) and (16.b) in
Eq. (15) it is possible to write the following expression for the addi-
tional term wa(x, n):
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where
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The expression obtained for wa(x, n) in this paper, Eq. (17), is
valid for any of the variables x and n values.
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