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a b s t r a c t

A general nodal expansion method (GNEM) is developed to solve the multi-dimensional steady and tran-
sient convection–diffusion equation in this paper. The developed GNEM is an integration of the modified
nodal integral method (MNIM) and nodal expansion method (NEM). Firstly, the local analytical solution
of the transverse integral equation from MNIM is obtained under the framework of the basis function
expansion method in NEM. Secondly, as to GNEM for time-dependent problems, the full space–time
nodal method is adopted. Thirdly, GNEM borrows the nodal balance equation from NEM to ensure that
the uniqueness of nodal-average variables and the conservation of all the pseudo-sources in each direc-
tion are automatically satisfied, which saves the GNEM from the complex derivation and calculations of
the nodal-average variables and the zeroth order pseudo-source terms in MNIM. In this paper, GNEM has
integrated the multi-dimensional transient and steady problems into the unified discrete formulation.
Besides, the code based on GNEM can be easily developed from the existing NEM code since GNEM-
base models have a unified formulation with conventional NEM—they only differ in the two control
parameters. Meanwhile, this kind of unified formulation also makes it easier to select GNEM and conven-
tional NEM in different computational domains for a test problem. Finally GNEM is formally developed
and numerical results show that GNEM has an accuracy consistent with the MNIM, or even higher accu-
racy than MNIM.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nodal methods with transverse integration technique have
been widely adopted in reactor physics analysis due to its high effi-
ciency and accuracy (Lawrence, 1986). In general, the basic idea is
that the multi-dimensional partial differential equation is reduced
into multiple one-dimensional transverse integral equations by the
transverse integration procedure, and then the one-dimensional
transverse integral equation can be solved by different methods,
which lead to different kinds of transverse-integrated nodal meth-
ods, and among these methods, there are two popular methods,
nodal expansion method (NEM) and nodal integral method (NIM)
(Lee, 2001).

In terms of the advantages of transverse-integrated nodal meth-
ods, some nodal methods are successfully extended to solve the
thermal hydraulic problems, like NIM and later developed modi-
fied NIM (MNIM). Both of them have already been developed to

solve steady and transient convection diffusion equations, Burgers
equations and Navier–Stokes equations (Wilson et al., 1988; Esser
and Witt, 1993; Michael, 1995; Michael and Dorning, 2001b;
Wang, 2005; Singh, 2008; Uddin, 1997). For steady convection dif-
fusion equations, MNIM has been proved to be more accurate and
more computationally efficient than high-order numerical
schemes of finite difference method (FDM) or finite volume
method (FVM), like the local exact consistent upwind scheme of
second order (LECUSSO) (Michael and Dorning, 2001b; Gunther,
1992). For transient problems, there are usually two ideas for
MNIM. One idea is that the temporal and spatial operators are both
discretized by nodal methods, and the other is that temporal oper-
ator is firstly discretized by using the lower order backward FDM,
and then the spatial operator and the terms resulting from time
discretization are discretized using the nodal methods. Numerical
properties of space and time for the two ideas are studied in the
previous research (Uddin, 1997; Zhou and Li, 2014a; Michael and
Dorning, 2001a).

Recently, convectional NEM has been extended to solve multi-
dimensional, steady convection–diffusion equations. The numeri-
cal properties, including accuracy, stability and numerical diffu-
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sion, are successfully studied in detail (Zhou and Li, 2014b; Zhou
et al., 2015). It is proved that the conventional NEM is superior
to second order upwind scheme and (quadratic interpolation for
convective kinematics) QUICK scheme. Also, nodal integral expan-
sion method (NIEM) has been developed. However, this approach
can be only applied to solve one-dimensional, transient convec-
tion–diffusion equation (Lee, 2011). In addition, a modified nodal
expansion method (MNEM) has also been presented to solve
multi-dimensional steady and transient convection–diffusion
equation (Deng, 2013). The key ideas lie in that an exponential
function, coming from the analytical solution of the one-
dimensional convection diffusion equation with constant physical
parameters, is introduced into the series of basis functions. Then
the temporal operator is treated using FDM. However, due to the
fact that the introduction of the above exponential function does
not take into account the remaining time-discrete terms, it will
be likely to cause greater numerical errors for MNEM.

Therefore, a general nodal expansion method is developed to
solve multi-dimensional steady and transient convection–diffusion
equation in this paper by making full use of the respective features
of modified nodal integral method (MNIM) and conventional nodal
expansion method (NEM). From the MNIM, it takes advantage of
the ideas that the transverse integral equations can be analytically
solved at the each local mesh and that the time variable is treated
using nodal methods. From the NEM, nodal balance equation and
the framework of the basis function expansion method are adopted
so that the local analytical solutions of transverse integral
equations are obtained by the basis function expansion method.
The detailed derivation process and features of GNEM are pre-
sented in Section 2. Some numerical experiments are carried out
to test the accuracy and efficiency of GNEM in Section 3, with a
comparison of those of conventional NEM and MNIM. Section 4
gives a brief summary and discussion.

2. GNEM’s formalism for steady and transient problems

The three-dimensional convection–diffusion equation in
Cartesian geometry is:
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where b ¼ 0 for steady problems and b ¼ 1 for transient problems.
U, V and W are the respective velocity component in the different
coordinate direction. C is diffusion coefficient, and Q is the source
term. Different /, C and Q can represent different transport equa-
tions. For example, when / represents velocity, C represents viscos-
ity and Q represents pressure gradient term, then Eq. (1) represents
Navier–Stokes equation; when / represents temperature, C repre-
sents thermal conductivity, Eq. (1) represents energy conservation
equation. Therefore Eq. (1) is chosen as the research object and after
that, GNEM can be easily extended to solve other types of problems.
The domain is divided into I � J � K �M nodes and the size of each

node is ½�hi;j;k
x ;hi;j;k

x � � ½�hi;j;k
y ;hi;j;k

y � � ½�hi;j;k
z ;hi;j;k

z � � ½�sm; sm�, in which
i, j, k and m are the nodes’ indexes in the x, y, z and t direction
respectively, with i ¼ 1; . . . ; I, j ¼ 1; . . . ; J, k ¼ 1; . . . ;K , m ¼ 1; . . . ;M.

For GNEM, temporal and spatial operator is both discretized by
nodal methods, that is, the temporal and spatial operators are both
treated by the transverse integration process. Eq. (1) is firstly
reduced into four one-dimensional transverse-integrated
equations in the x, y, z and t directions by transverse integration
strategy. Then each transverse-integrated equation within the
time–space nodal (i, j, k,m) is analytically solved by the special
basis function expansion method, and these expansion coefficients
are determined in the same way as the convectional NEM. After
that, by imposing continuity of transverse-integrated variables

and diffusion currents at the node interface, a set of coupled dis-
crete equations are obtained in terms of nodal average variables
and expansion coefficients of true source term, where the nodal
average variables can easily be solved by the nodal balance
equation. The derivations are discussed in detail below.

2.1. Transverse integration process

By applying the transverse integration strategy in the time–
space nodal (i, j, k,m), transverse-integrated equations in the x, y
and z directions are yielded by, respectively:
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that is
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where the indexes (i, j, k,m) are omitted for simplify on all the
above variables and they will be added later. U, V , W and C are
the average values in the time–space nodal (i, j, k,m); r ¼ x; y; z;
Fx ¼ U, Fy ¼ V , Fz ¼ W . /rðrÞ is the r-dependent transverse-
integrated variable. The pseudo-source terms SrðrÞ are divided into
two terms: transverse-integrated true source term QrðrÞ and trans-
verse leakage terms LrðrÞ. For steady problems b ¼ 0, /rðrÞ, QrðrÞ and
LrðrÞ are defined as:

/rðrÞ ¼
1

4hnhg

Z hn

�hn

Z hg

�hg

/ðr; n;gÞdn dg ð6Þ

QrðrÞ ¼
1

4hnhg

Z hn

�hn

Z hg

�hg

Qðr; n;gÞdn dg ð7Þ

LrðrÞ¼ 1
4hnhg

Z hn

�hn

Z hg

�hg

Fn
@/
@n

�C
@2/

@n2
þFg

@/
@g

�C
@2/
@g2

 !
dndg ð8Þ

where r ¼ x; y; z– n – g; n ¼ y; z; x; g ¼ z; x; y. For transient
problems, b ¼ 1, and extra time integrations are needed for the
definition of /rðrÞ, QrðrÞ and LrðrÞ.
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In addition, the transverse-integrated equation in the time t
direction can be obtained by transverse integration strategy.

d/tðtÞ
dt

¼ StðtÞ ¼ QtðtÞ � LtðtÞ ð12Þ
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